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TEAM: An Experiment in the Design of
Transportable Natural-Language Interfaces

Barbara J. Grosz Douglas E. Appelt Paul A. Martin
Fernando C.N. Pereira
Artificial Intelligence Center
SRI International

September 18, 1986

Abstract

This article describes TEAM, a transportable natural-language in-
terface system. TEAM was constructed to test the feasibility of build-
ing a natural-language system that could be adapted to interface with
new databases by users who are not experts in natural-language pro-
cessing. An overview of the system design iz presented, emphasiz-
ing those choices that were imposed by the demands of transporta-
bility. Several general problems of natural-language processing that
were faced in constructing the system are discussed, including quan-
tifier scoping, various pragmatic issues, and verb acquisition. TEAM
is compared with several other transportable systems; this comparison
includes a discussion of the range of natural language handled by each
as well as a description of the approach taken to achieving transporta-
bility in each system.
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1 Introduction

A natural-language interface (NLI) to a computer database provides users
with the capability of obtaining information stored in the database by query-
ing the system in a natural language (e.g., English). With a natural lan-
guage as a means of communication with computer systems users can frame
a question or a statement in the way they normally think about the infor-
mation being discussed, freeing them from having to know how the com-
puter stores or processes the information. However, most existing natural-
language-interface systems have been designed specifically to treat queries
that are constrained in two ways: (1) they are concerned with a single ap-
plication domain, and (2) they pertain to information in a single database.l
Construction of a system for a new domain or database requires a sizable
new effort, almost equal in magnitude to the original one.

Transportable NLIs, i.e., those that can be easily adapted to new domains
or databases, are potentially much more useful than domain- or database-
specific systems. However, because many of the techniques developed for
specialized systems preclude automatic adaptation of the systems to new
domains, constructing transportable systems poses a number of technical
and theoretical problems . In describing TEAM (for Transportable English
Database Access Medium), a transportable NLI system that has been the
focus of a four-year project (started in 1980), this article discusses sev-
eral problems of natural-language processing that were faced in its con-
struction and emphasizes those system design choices that were imposed
by the demands of transportability. For some of these problems, the de-
sign decisions used in TEAM are generally applicable to a broader range of
natural-language-processing systems; for others, we were forced to take a
more limited approach.

1.1 Transportability

A major challenge in building NLIs is to provide the information the sys-
tem needs to bridge the gap between the way the user thinks about the
domain of discourse and the way information about the domain is struc-
tured for computer processing. Existing databases employ different repre-

1The systems are also constrained in a third way: they handle only a single task, namely,
database query. This constraint is in many ways more limiting than the other two. For
example, queries are typically treated largely in isolation; very few dialogue features
are handled. Inasmuch as this third constraint remaina a characteristic of TEAM it
will not be discussed further in this article.



sentational conventions, many of them devised to satisfy various database
management criteria. For example, one might encode geographic informa-
tion about mountain peaks in Switzerland as part of a file of information
about the mountain peaks of the world, identifying them with an “SWZ”
in a COUNTRY field, or using a SWISS? feature field for which a “Y” in-
dicates that a peak is in Switzerland, while an “N” means that it is not.
Or the information might be in & separate file on Switzerland, or in one on
Swiss mountain peaks. The kinds of queries a user might pose—for exam-
ple, “What is the highest Swiss peak?” “Are there any peaks in Switzerland
higher than Mt. Whitney?” “Where is the Jungfrau?”—should not depend
in any way on the representation chosen for the database. An NLI should
be able to handle these queries for any of the encodings; the queries all
appropriately request information available in the database. Although the
English query input to the NLI is the same in all cases, the NLI’s output
(i.e., specific commands to a database system to retrieve the requested in-
formation), will be quite different for the different encodings. The output
must reflect the database’s actual structures and conventions. One of the
main functions of the NLI is to make the necessary transformations and thus
to insulate the user from the particularities of the database.

To provide this insulation and bridge the gap between the user’s view and
the system’s data structures requires a combination of domain-specific and
general information. In particular, the system must have a model of the ap-
plication domain’s subject matter, including information about the objects
in the domain, the properties they possess and their interrelationships, and
the words and phrases used to refer to each of these; the system must also
know the connection between entities in that model and the information in
the database. In constructing transportable systems, it is therefore impor-
tant to provide a means for acquiring domain-specific information easily.

A major hypothesis underlying TEAM is that, if an NLI is constructed
in a sufficiently well-principled manner, the information needed to adapt
it to a new database and its corresponding domain can be acquired from
users who have general expertise about computer systems and the particular
database, but who do not possess any special knowledge about natural-
language processing or the particular NLI. In testing this hypothesis, we
also assumed that the database could not be restructured. Theoretical and
practical motivations underlay this choice. From a theoretical standpoint, it
is the most conservative assumption we could have made, It has forced us to
adopt general solutions to certain system design issues because we could not



restructure the data to alleviate problems of natural-language processing.?
From a practical point of view, the choice reflected our desire to furnish
techniques that could cope adequately with existing databases—some of
which, because of their size and complexity, are too difficult to restructure.

1.2 A Sample Database

Throughout the rest of the article, we will use the database shown schemat-
ically in Figure 1 to help illustrate various aspects of TEAM. This database
comprises four files (or relations) of geographic data. The first file,
WORLDC, has five fields—NAME, CONTINENT, CAPITAL, AREA and
POP—that together specify the continent, capital, area, and population
for each country in the world. The second, BCITY, contains the country
and population of some of the larger cities of the world. The third, named
CONT, shows the hemisphere, area, and population of the continents. Vari-
cus mountaing in the world are represented in the fourth file, named PEAK,
along with the country in which they are located, their height, and an in-
dication as to whether they are volcanoces. Because several files may have
fields with the same names, TEAM prefixes file names to field names to
form unique identifiers (e.g., WORLDC-NAME, PEAK-NAME, CONT-POP,
BCITY-POP); we shall do likewise in the discussion that follows.

TEAM distinguishes among three different kinds of fields — feature,
arithmetic, and symbolic. Feature fields (e.g., PEAK-VOL and CONT-HEMI)
contain true/false values indicating whether or not some attribute is a
property of the file subject. Arithmetic fields (e.g., WORLDC-AREA
and PEAK-HEIGHT) contain numeric values on which computations (e.g.,
averaging) can be done. Symbolic fields (e.g., WORLDC-NAME and
PEAK-COUNTRY) typically contain values that correspond to nouns or ad-
jectives denoting the subtypes of the domain denoted by the field.

More information can be gleaned from a database than that directly
encoded in its individual files. For instance, the continent on which a peak is
located can be derived from two facts in the sample database: the country in
which it is located (in field PEAK-COUNTRY) and the continent of which the
country is a part (in field WORLDC-CONTINENT). Likewise, the hemisphere
in which a country is located can be determined from the continent on

2Such restructuring can often result in a closer match between the way information is
stored and the way it is referred to in NL expressions. For instance, in the previous
example z database structure that includes the SWISS? feature field is more difficult
to handle in a general manner than one that uses the COUNTRY field encoding.



WORLDC BCITY
NAME CONTINENT | CAPITAL | AREA POP NAME COUNTRY POP
Afghanistan | Asia Kabul '260,000 | 17,450,000 Brussels Belgium 1,050,787
Albania Europe Tirana 11,100 2,620,000 Buenos Aires | Argentina 8,925,000
Algeria Africa Algiers 919,951 | 18,510,000 Canberra Australia 210,600
: !
CONT PEAK
NAME HEMI AREA POP NAME COUNTRY | HEIGHT | vOL

Alrica S 11,500,000 41,200,000 Anocagua Argenlina 23,080 N

Antarctica ] 5,000,000 £00 Annapurna Nepal 26,504 N

Asia N 16,990,000 | 2,366,000,000 Chimborazo | Ecuador 20,702 Y

) ]

Figure 1: Sample Database

which the country is located and the hemisphere of that continent. TEAM
allows the database expert to specify virtual relstions that capture such
additional information. In Section 1.3.2 we show both the information that
must be acquired to handle the two foregoing examples and the way TEAM
accomplishes the acquisition.

1.3 Overview of TEAM

The design of TEAM reflects several constraints imposed by the requirement
of transportability. In particular, the need to decouple the representation
of what an end user means by a query from the procedure for obtaining
that information from the database affected the choice of system compo-
nents; likewise, the need to separate the domain-dependent knowledge to
be acquired for each new database from the domain-independent parts of
the system inevitably influenced the design of specific data structures (or
“knowledge sources”) selected for encoding the information utilized by these
components.

The TEAM system is designed to interact with two kinds of users: a
database expert (DBE) and an end user. The DBE engages in an acquisition
dialogue with TEAM to supply the information needed to adapt the system
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to a new database or to expand ite capabilities in answering questions about
information in a database to which it had previously been adapted (e.g., by
adding new verbs or adjectives or synonyms for existing words). Once a
DBE has provided TEAM with the information it needs about a database
and domain, any number of end users can use the system to query the
database.

The TEAM system thus has two major modes: acquisition and question-
answering. The acquisition dialogue with the DBE is organized around
the database structure. It is a menu-driven interaction through which the
DBE provides information about the files and fields in the database,® the
conceptual content they encode and how they encode it, and the words and
phrases used to refer to these concepts. Hence the DBE must know about
the particular database structure and the subject domain its information
covers, but does not need to know how TEAM works or any special language-
processing terminology.

The question-answering system divides into two major components: the
DIALOGIC system [10] for mapping natural-language expressions onto for-
mal logical representations of their meanings, and a schema translator that
transforms these logical forms into statements of a database query language.
Figure 2 illustrates the major components of this system, the knowledge
sources they use, and the flow of language-processing tasks from analysis of
an inputted English sentence to generation of a database query. The rect-
angular boxes represent the components, while the ovals to their right stand
for the various knowledge sources. The acquisition box on the right points
to those knowledge sources that are augmented through interaction with the
DBE. All other modules and knowledge sources are built into TEAM; they
are not changed by the acquisition process.

1.3.1 Systemn Components Affected by Acquisition

The Lexicon The lexicon is a repository of the information about each
word that is essential for morphological, syntactic, and semantic analysis.
There are two kinds of lexical items: closed class and open class. Closed
classes (e.g., pronouns, conjunctions, and determiners) contain only a finite,
usually small number of lexical items. Typically, these words have com-
plex and specialized grammatical functions, as well as [at least some| fixed

STEAM currently assumee a relational database with a pumber of files. No difficult
language-processing problems would result from conversion to other models. The query
language into which it translates queries has been used to access other database models.



INPUT DIALOGIC

sentENCE | T T T T =TT '}
DIAMOND PARSER DIAGRAM |
|| CONSTRUCTOR FUNCTIONS GRAMMAR | |
I |
PARSE TREE
| [ SEMANTIC TRANSLATORS :
4——1— AND BASIC SEMANTIC
l | FUNCTIONS -~ ]
TREE WITH | _= ACQUISITION
PREDICATE | e
ARGUMENTS | !
ANNOTATED | [
- ! | BASIC PRAGMATIC | |
- T FUNCTIONS
! i CONCEPTUAL SCHEMA
i I SORT HIERARCHY
- | SCOPE I PREDICATES
* : DETERMINERS i PRAGMATIC PROPERTIES
I
k J L .
LOGICAL FORM
SCHEMA
P—— DATABASE SCHEMA
TRANSLATOR SCHEMA MAPPING
SODA QUERY DATABASE MAPPING
SODA
ANSWER FROM DATABASE

Figure 2: TEAM System Diagram

meanings that are domain-independent. They are likely to occur with high
frequency in queries to almost any database. Open classes (e.g., nouns,
verbs, adjectives) are much larger and the meaning of their items tends to
vary according to the given database and domain. Therefore, most closed-
class words are built into the initial TEAM lexicon, while open-class words
are acquired for each new domain. However, there are a number of open-
class words — for example, words corresponding to concepts in the initial
conceptual schema (see Section 1.3.1), and those for common measure units,
such as meter and pound, that are so widely applicable to so many database
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domains that they are included in the initial lexicon as well.

The lexical entries acquired by TEAM include those for the narmes of
fields, field values, and file subjects. (File subjects are those entities about
which some relation contains information — e.g., peaks for PEAK, and
countries for WORLDC in the sample database iliustrated in Figure 1). In
addition, DBEs can provide adjectives and verbs that correspond to various
relations and properties represented in the database; they can also supply
synonyms for words already acquired {see Section 1.3.2). Associated with
each lexical entry is syntactic and semantic information for each of its senses.
Syntactic information consists of a primary category (e.g., noun, verb, ad-
jective), a subcategory (e.g., count, unit, mass for nouns; kinds of objects for
verbs), and morphological information (e.g., irregular plurals and compara-
tives). Semantic information depends on the syntactic category. The entry
for each noun includes the sort(s) or individual(s) in the conceptual schema
(Section 1.3.1) to which that noun can refer. Entries for adjectives and verbs
include the conceptual predicates to which they refer and information as to
how the various [syntactic|] constituents of a sentence map onto arguments
of the predicate. Scalar adjectives (e.g., “high”) also include an indication
of direction on the scale (plus or minus).

Conceptual Schema The conceptual schema contains information about
the objects, properties, and relations in the domain of the database. It
includes sets of individuals, predicates, and constraints on the arguments of
predicates, as well as information needed for certain pragmatic processing
(see Section 3.4). The conceptual schema consists of a sort hierarchy and
descriptions of various properties of nonsort predicates.

The sort hierarchy represents relationships among certain [monadic| sort
predicates that play a primary role in categorizing individuals (represented
here in italic type, as in PERSON). TEAM was designed with a considerable
amount of this conceptual information built in. Figure 3 illustrates a portion
of this initial built-in hierarchy with one new node, peak-height, added by
acquisition. Each line connecting levels of the hierarchy represents a set-
subset relationship between the categories of individuals. The sorts that are
connected by the small arcs directly below the nodes are disjoint; that is, no
individual can be in two sorts corresponding to nodes joined in this manner.
The sort hierarchy grows as information about a database is acquired. The
DBE is required to place newly acquired concepts in the appropriate place
in the hierarchy and, if they represent sets that are disjoint, to specify
accordingly.



THING

physical-object absiract-objact legal-person

even location scalar other-abs maasura-unit legal-abs nams quality Iz ature

count measune time

time-maasure inear-measurg

wiight-measura wolurna-measure arsa-megsurs femperature-maasure

peak-height

Figure 3: A Fragment of TEAM’s Sort Hierarchy

Each field in the database is associated with the sort of objects that can
appear in that field. Several additional properties are associated with the
sorts derived from symbolic fields and from certain kinds of arithmetic fields.

With each sort arising from a symbolic field, TEAM associates a pred-
icate that encodes the relationship between that sort and the sort of the
file subject. For example, for the relation WORLDC in Section 1.2, which
includes information about capitals and continents, it would link the sort
WORLDC-CAPITAL with the predicate WORLDC-CAPITAL-OF (in this
article, predicates will be represented in bold type) that takes two argu-
ments, the first of sort WORLDC-CAPITAL and the second of sort COUNTRY.
This link is used in handling queries like “What is the capital of each coun-
try in Europe?” In particular, it is used to determine what it means for
a capital to be “of” a country or a country to be “in” Europe. Additional
properties of the sort indicate whether individual instances of it can serve to
modify or stand for instances of the sort of the file subject (e.g., “European
countries” , but not “Buropeans”, can be used to refer to the countries ¢ sat-
isfying the predication (CONTINENT-OF ¢ EUROPE)). These possibilities



are discussed in greater detail in Section 3.4.

Sorts that correspond to arithmetic fields containing measures (e.g.,
length, age) also include information about the implicit unit of measurement
(e.g., feet, years), and the kind of measure (e.g., linear extent, temporal ex-
tent).

Several kinds of information are associated with nonsort predicates. A
delineation specifies the constraints on the sorts for each of its arguments.
(Multiple delineations are possible; see below and Section 3.5.2.) Predicates
corresponding to comparative adjectives (e.g., “tall”) have two additional
properties: a link to the predicate that specifies the degree (e.g., some length
predicate), and an indication of direction on the scale measured (e.g., plus
for TALL, minus for SHORT). Many general predicates have semantic and
pragmatic specialists associated with them. These are used to deterrnine
more precise meanings of words denoting vague predicates (e.g., “have”,
“of” and genitive constructions) and to treat certain types of modification
(e.g., nominal compounds) and coercion; they are discussed in more detail
in Section 3.4.

Database Schema The translation from logical form to SODA [19] query
requires knowing the exact structure of the target database and how the
predicates appearing in the logical form are associated with the relations in
the database. This information is provided by the database schema, which
includes four types of information: # (1) definitions of sorts in terms of
database relations (subject) or fields (and field value for sorts derived from
feature fields); (2) a list of convenient identifying fields for each sort corre-
sponding to a file subject or field; (3) definitions of predicates in terms of
actual database relations and attributes; this is done for predicates gener-
ated for relation subjects and fields of both actual and virtual relations; (4)
a list of the key fields of each relation.

The database schema relates all the predicates in the conceptual schema
to their representation in a particular database. For each predicate, the
database schema gives a logic formula defining the predicate in terms of
database relations. For example, the predicate WORLDC-CAPITAL-OF
has as its associated database schema a formula representing the fact that
its first argument is taken from the WORLDC-CAPITAL field of a tuple of

*As described in Section 3.6, the schema translator also uses certain information in the
conceptual schema, including taxonomic information in the sort hierarchy and delin-
eation information associated with nonsort predicates.



the WORLDC relation, and the second argument comes from the WORLDC-
NAME field of the same relation. If a predicate has multiple delineations—
i.e., if it applies to different sorts of arguments—{(e.g., a HEMISPHERE-OF
predicate could apply to both COUNTRIES and CONTINENTS), the schema
will include a different definition for each set of arguments. In some cases
(e.g., predicates corresponding to some verbs and adjectives), the mapping
associated with a predicate indicates its equivalence to another (conceptual
schema) predicate with certain arguments fixed; the predicate NORTHERN
in the second example of Section 2 illustrates this case.

1.3.2 Acquisition

The acquisition component of TEAM is crucial to its success as a trans-
portable system. Recall that one constraint on TEAM is that the DBE not
be required to have any knowledge of the system’s internal workings, nor
about the intricacies of the grammar, nor of computational linguistics in
general. Yet it is necessary to somehow extract detailed and, frequently,
linguistically oriented information from the DBE during acquisition. Fur-
thermore, it is desirable that the acquisition component be designed to allow
a DBE to change answers to questions and add information as he gains ex-
perience with TEAM and the types of questions that are asked by end users.

In an attempt to satisfy all these constraints, the menu-oriented system
depicted in Figure 4 was developed. The acquisition system consists of a
menu of general commands at the very top, three menus associated with re-
lations, fields, and lexical items respectively, and, at the bottom, a window
for replies to questions. The fonts used to display the icons encode some
information about the objects they represent. Actual relations are repre-
sented in roman type, while virtual relations are represented by italics. An
icon appears in boldface when the minimal amount of information about
the associated object that is required for responding to queries has been
furnished by the DBE. When the DBE mouse-selects one of the items from
the three menus, a set of questions appears in the question-answering area
at the bottom of the display to which he can then respond. Appendix A
lists all of the questions asked by TEAM along with a brief description of
the information derived from replies to each.

One of the general principles of acquisition is evident from this display,
namely, that the acquisition is centered on the relations and fields in the
database, because this is the information most familiar to the DBE. The
answers to each question can affect the lexicon, the conceptual schema, and

10



SOHT-EDNTOR VIATUAL-DEF NEW-RELATION MNEW-WORD ouIT

Fiis Menu

BCIY HEMIC CONT PHCONT PEAX WORLDC
Field e

BCITY-COUNTRY BCITY-NAME acny-FoP CONT-AREA
CONT-HEM! CONT-MAME CONT-POP HEMC-HEM!
HEAMC-MAME PEAX-LOUNTHY PEAX-HEGHT PEAK-NAME
PEAK.-YQL PXCONT-LONTINENT PRCONT-NAME WORLDC-AREA
WORLDC-CAPTTAL WORLDC-CONTINENT WORLDC-RAME WORLDC-POP
Word Menu

AREA (n) BIG {ad) CAPITAL {n)

CITY (n) COMPACT (e} CONTAIN {v)
CONTIHENT {n) COUNTHY {n) COVER (v}

ERUPT (v EXTENSIVE () HEIGHT (r)

HEMI {n) HIGH (nf) LARGE (ad)

LMITED (ad} LOW (ad) N [n)

MAME {n) NORTHERM (wcD PEAX (n)

Question-Answering Area

Fiald PEAK-HEIGHT is pan of an ACTUAL rslation.

Type of field - SYMBOLIC ARITHEMTIC FEATURE

Value type - DATES MEASURES COUNTS

Ara the units Implicit? YES NO

Enter implicit unit - FOOT

Measure type of this unil - TIME WEIGHT SPEED VOLUME LINEAR WORTH TEMPERATURE
OTHER

Abbraviation for this unii? - FT

Conversion formula from METERS ta FEET - {(f X 0.3048)
Convarsion formula from FEET to METERS - {* X 0.3048}
PosHive adjectives - TALL HIGH

Negaltive adjectives - SHORT LOW

Figure 4: The Acquisition Menu

the database schema. The DBE need not be aware of exactly why TEAM
asks the questions it does — he need only answer them correctly. Even the
entries displayed in the word menu owe their presence to questions about
the database. The DBE volunteers additions to this menu only in the case
of verbs (described in Section 3.1), to provide an adjective corresponding to
some noun already in TEAM’s lexicon, or to enter a synonym for some word
that is already in the lexicon.

The DBE is assumed not to have any knowledge of formal linguistics or of
natural-language-processing methods. He is assumed to know some general
facts about English — for example, what proper nouns, verbs, plurals, and
tense are — but nothing more detailed than that. If more sophisticated
linguistic information is required, as in the case of verb acquisition, TEAM
proceeds by asking questions about sample sentences, allowing the DBE to
rely on his intuition as a native speaker, and extracting the information it
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needs from his responses.

Virtual relations are specified iconically. Figure 5 shows the acquisition
of a virtual relation encoding the continent (PKCONT-CONTINENT, iden-
tified with WORLDC-CONTINENT) of a peak (PKCONT-NAME, identified
with PEAK-NAME) by joining the PEAK-COUNTRY and WORLDC-CONTINENT
fields. This join captures the information that peaks are on the contirent
of the country in which they are located. By specifying the join, the DBE
enables TEAM to answer questions concerning peaks and the continents
on which they are located without requiring that a query include anything
explicit about the country in which the peak is located.

The DBE can change previous answers. Incremental updates are possible
because most of the methods for updating the various TEAM structures
(lexicon, schemata) were written to undo the effects of previous answers
before asserting the effects of new ones. Help is always available to assist the
DBE when he is unsure how to answer a question. Selecting the question text
with the mouse produces a more elaborate description of the information
TEAM is trying to elicit, usually including illustrative examples.

Finally, the acquisition component keeps track of what information re-
maing to be supplied before TEAM has the minimum it requires to handle
queries. The DBE does not need to figure out what information is sufficient,
but only to recognize whether any of the acquisition windows indicate that
there are still unanswered questions. Of course, the DBE can always pro-
vide information beyond the minimum required—for example, by supplying
additional verbs or synonyms.

1.3.3 Natural-Language Processing Component

The flow of control during TEAM’s translation of a natural-language query
into a formal query to the database becomes evident if the left side of Figure
2 is scanned from top to bottom. The transformation takes place in two
steps: first, the DIALOGIC system constructs a representation of the query’s
literal meaning, or logical form (LF) (Section 1.3.4); second, the schema
translator transforms this logical form into a database query (Section 3.6).

The DIALOGIC system comprises the following components (shown en-
closed within the dotted box in Figure 2): the DIAMOND parser, the DIA-
GRAM grammar, the lexicon, semantic-interpretation functions, basic prag-
matic functions, and procedures for determining the scope of quantifiers.
DIALOGIC is described in more detail elsewhere [10], and we can mention
here only some of its main features. Various key issues addressed in devel-
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SORT-EDITOR VIRTUAL-DEF MNEW-RELATION MNEW-WORD

Fils Morw
HEMIC CONT PXCONT PEAK WORLDC

Specification of vinual fields for PKCONT relation
PKCONT-CONTINENT: WORLDC-CONTINENT
PKCONT-NAME: PEAK-NAME

Vinual Relation Acquisition

PEAK

NAME [ HEIGHT | COUNTRY | VOL

PKCONT
NAME | CONTINENT
—~—

WORLDC

NAME | AREA [ POP [ CAPITAL | CONTINENT

Figure 5: Acquiring the Virtual Relation PKCONT

The DIAGRAM grammar [26] is an augmented phrase structure grammar
with rules that cover a broad spectrum of constructions, including all com-
mon sentence types, complex auxiliaries and modals, complex noun phrases,
all the common quantifiers, comparative and measure expressions, relative
clauses, and subordinate clauses and other adverbial modifiers along with
various constructions that are less common in the database query task® (e.g.,

13

oping the semantic-interpretation functions, basic pragmatic functions, and
quantification procedures are discussed in Section 3. The two data struc-
tures in DIALOGIC that are affected by TEAM’s acquisition process are the
lezicon and the conceptual schema.

SDIAGRAM has been used in a number of systems, including text (e.g., The Tacitus




sentential complements); it also handles a limited range of conjunction. The
DIAMOND parser is a bottom-up parser based on Paxton’s executive system
for the SRI speech-understanding project [21].

DIALOGIC separates semantic-interpretation operations into two main
classes: translators, which define how the interpretations of the constituents
of a phrase are combined into the phrase’s overall interpretation, and ba-
ste semantte functions, which are called by the translators to construct the
particular representations of the interpretations of phrases. The transla-
tors are tied to the grammar rules (and change as those rules change), but
not to the underlying representation (e.g., logical form, network) so that
the representation can be changed without affecting the basic translation

process.®

In brief, when the end user asks a query, DIALOGIC parses the sentence,
producing one or more trees that represent possible syntactic structures.
The “best” parse tree, based on a priori syntactic criteria, is selected and
annotated with semantic information [26,18]. Next, pragmatic analysis (Sec-
tion 3.4) is applied to assign specific meanings, of relevance for the current
domain, to noun-noun combinations and to “vague” predicates like HAVE
and OF.7 Finally, the quantifier scope determination process (Section 3.3),
after considering all possible alternatives, determines the best relative scope
for the quantifiers in the query. The logical form thus constructed consti-
tutes a completely unambiguous representation of the English query, using
a set of predicates that are meaningful with respect to the given domain and
database.

The sequential processing in DIALOGIC (completing syntactic analysis
before semantic processing, etc.) represents a practical rather than a theo-
retical choice. Although in principle it seems advantageous to bring different
types of information to bear throughout processing and, moreover, tech-
niques have been developed for doing so [21,36], there is as yet no evidence
that, given current techniques for applying the different types of knowledge,
it is actually more efficient to build a system this way. At present syntac-
tic processing is sufficiently less costly than semantic analysis as to make

project currently under way at SRI} and dialogue systems {e.g., [25]}.

®Experience with moving from partitioned [semantic] networks to logical form motivated
this design [12,18].

TWe consider these predicates vague, because their semantic import is highly context-
gensitive; the reasons for introducing them, as well as the mechanisms used to handle
them, are discussed in Sections 3.4 and 3.5.
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sequential processing appear more efficient in practice,.

The logical form produced by DIALOGIC is translated into a query in the
SODA [19] database query language by the schema translator (Section 3.8).
In addition to the conceptual schema, the schema translator uses a database
schema that provides information about the actual structures used in the
particular database being accessed. This schema (discussed in more detail
in Section 1.3.1) is also affected by the acquisition process.

Finally, the database query produced by the schema translator is given
to the SODA interpreter, which executes the query and displays the answer.
SODA was not developed as part of TEAM, but has features consistent with
TEAM’s overall goal of transportability. It was designed for querying dis-
tributed databases and is capable of interfacing simultaneously with several
types of database management systems.

The processes TEAM executes in replying to an end user's query are
similar to those that any custom-designed NLI would execute. What is
different in the case of TEAM is that the modules must be carefully designed
to allow for maximum generality, which precludes many of the shortcuts that
are common to custom NLI systems (e.g., LADDER [11], PLANES [34]).
Two techniques that are consequently ruled out are the use of a semantic
grammar and the conflation of the meaning of a query with a specification
of the procedure for retrieving its answer from the database.

Semantic grammars are based on constituent categories that are chosen
not for their ability to represent grammatical regularities, but for the sim-
plification of parsing and interpretation achieved when the grammar reflects
the conceptual structure of the database domain. For example, instead of
the general categories of “noun” and “verb phrase,” semantic grammars may
have such categories as “country” and “location-specification.” Because they
do not capture syntactic regularities, such grammars often provide uneven
coverage (e.g., an inability to handle passive forms of all queries). Further-
more, adding conceptual coverage (e.g., to cover a new domain) typically
requires extensive revision of the grammar.

Efficiency can also be achieved by mapping a natural-language query
directly into the code required for retrieving an answer from the database,
but at the cost of being locked into a particular database. A number of
database query systems (e.g., LADDER) construct a database query directly
while parsing the input with semantic grammar rules; they do this without
building any other representation of what the query means.
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1.3.4 Logical Form

Logical form plays a central role in TEAM: it mediates between the way an
end user thinks about the information in a database, as revealed in queries
to the system, and the way information can be retrieved from the database
through queries expressed in 2 formal database query language. The predi-
cates and terms in the logical form for a particular query are derived from
information in the lexicon and conceptual schema;® hence the choice of log-
ical form affects the design of those system components indirectly and de-
termines to some extent the information the DBE must supply.

The logical form employed by TEAM is first-order logic extended by
some intensional and higher-order operators, and augmented with special
quantifiers for definite determiners and WH determiners (e.g., “which” and
“what”). Figure 6 gives a BNF-like specification of the logical form used in
TEAM. Much research has been done to determine appropriate logical forms
for many kinds of sentences [20], but such issues lie beyond the scope of this
article.

Although the SODA query that resulis from the analysis of an English
query represents, at least in some sense, the intended meaning of the query,
it does so in a way that directly reflects the structure of the database being
queried. The reflection of database structure becomes quite evident if one
compares the logical forms of queries with the respective SODA forms for
the examples of Section 2. As a result, two different databases encoding
the same information, but in different structures, will result in two different
database queries for the same English question. For example, if an end
user asks “How many Swiss mountains are there?” the database queries
generated in response to his question can look very different, depending on
whether the tuples representing Swiss peaks are distinguished from those
representing other peaks by their membership in a different relation or by
the presence of the character string “SWZ” in a COUNTRY field.

The problem this creates is more than an aesthetic one: for TEAM to
obtain through the acquisition process the semantic and pragmatic rules
necessary for producing a database query directly from an English query
(or information sufficient for generating such rules automatically), it would
have to ask the DBE about much more than the structure and contents of the
database. Such acquisition would require the kind of expertise in natural-
language processing that TEAM is meant to obviate. Thus, the demands

8As noted previously, the specific form depends also on general gyntactic, semantic, and
pragmatic rules for English encoded in the various components of DIALOGIC.
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logical-form ::== (connective . conditions) | condition

connective ::== AND | OR | NOT

condition ::== guantification | predication
quantification ::== (quantifier variable range scope)
predication ::== (predicate . arguments)

range ::== logical-form

scope ::== logical-form

quantifier ::== determiner [ count

determiner ::== ALL | SOME | THE | WHAT

count ::== (NUM number)

predicate ::== basic-predicate | comparative | superlative
comparative ::== (comparative-operator adjective)
superlative ::== ((SUPER comparative) variable range)
comparative-operator ::== LESS | AS | MORE

(and minor variations)
argument ::== variable | constant

Figure 6: BNF Definition of Logical Form

of transportability preclude using the SODA language for representing the
meaning of queries.?

In Section 2 we illustrate the use of some particular logical-form con-
structions. By showing their use in processing actual queries presented to
TEAM, we are able to demonstrate how they relate both to various English
expressions and to the SODA query language.

1.4 Outline

In Section 2 we describe how TEAM processes various queries put to our
sample database.

Section 3 contains discussions of the major conceptual problems ad-
dressed in building TEAM. These fall into three groups. The first includes
general features of natural language that are prevalent in database queries

*Tn addition, DIALOGIC was designed to be 2 general language-understanding system
that could be (and has been) applied to tasks other than database question-answering.
Therefore, it was undesirable to restrict its application by choosing a less general se-
mantic representation.
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(e.g., quantifier scoping, noun-noun combinations, lexical ambiguity, and co-
ordination) and require sufficiently general treatment to permit TEAM to
handle queries over a wide range of domains, acquiring any domain-specific
informaticon it needs for this purpose. A second group of problems has to
do with providing adequate tools for extracting the right kinds of infor-
mation (e.g., about verbs) from a DBE who has no special knowledge of
Al or linguistics. The third group is related to the transformation of the
logical representation of a query’s meaning into an appropriate and effi-
cient database query; these problems arise in part from the requirement
that TEAM’s natural-language processing be independent of the details of a
particular database structure.

TEAM is one of several recent attempts to build transportable systems.
Different approaches to transportable systems reflect diverse conceptions
as to what kinds of skills and knowledge might be required of the people
doing the adaptations (in particular, whether expertise in natural-language
processing is essential), and what parts of the system might be changed
(in particular, whether the database could be restructured). In Section 4,
we compare several other systems with TEAM from the standpoint of the
choices they embody and the effects of these choices on system design.

Section 5 presents our conclusions and suggests several areas for further
research.
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2 Examples of TEAM in Operation

To illustrate TEAM’s processing of natural-language queries, we will con-
sider two queries posed about the information in the sample database given
in Figure 1. These queries also illustrate the role of the various kinds of
information utilized by TEAM — whatever has been entered through the
acquisition process as well as information built into the core system. The
two examples cover only some of the constructions TEAM handles. Section
3 gives more details on the way those and other constructions are treated.

The queries to be discussed are
(1) Show each continent’s highest peak.

(2) What northern countries contain peaks higher than Fuji?

Although 1 is an imperative, in this setting it functions as a question;
the initial interpretation preserves the imperative form, but a simplified log-
ical form constructed for the database component converts this to a query.
Sentence 1 also illustrates the use of the genitive interpreted to mean con-
tainment and the need to determine quantifier scope. Answering it requires
information from three of the files — CONT, WORLDC, and PEAK. Note,
also, that the schema translator must use the virtual relation PKCONT, gen-
erated by joining PEAK and WORLDC, to provide the appropriate database
query for this example.

The second query, 2, is a wh-question that illustrates TEAM’s handling
of verbs and comparatives. It too requires that a virtual relation, HEMIC,
be used by the schema translator, because “northern” is associated with
continents in the actual database, not with countries.

For each of these queries, we will show the sequential steps of TEAM’s
processing — deriving the parse trees and constructing the logical form, in-
cluding determining quantifier scope, resolving various pragmatic problems
and forming the SODA query.

TEAM initially gets four parses for Example 1; these are ranked ac-
cording to a priori scores given to certain constructions [26,21], and factors
that weigh the likelihoods of various combinations of constituents. The
top-ranked parse is shown in Figure 7). Two parses have the next higher
ranking; they correspond to structures that would make sense for queries
like the following (ellided material is given in square brackets to make the
meaning of each more clear):

(3) Show each class’s brightest [student the/ pictures.
(4) Show each [visitor] Susan’s best photograph.
The fourth analysis corresponds to a structure that would account for
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SIMP

NP

NP NOMHD
/}OMHD PRENOMP
| |

VPT DETP NOUN ADJP NOUN ENDPUNCT
. | N\
v DDET N LITERALGEN EST  ADJ N LITERAL..
|
SHOW EACH CONTINENT GEN EST HIGH PEAK

Figure 7: First Parse for Example 1

(5) Give the student’s [puppy/ highest marks.

Such utterances presume a discourse context that fills in the material ellided
from the genitive noun phrase. In this example, the context must supply a
set of puppies, one of which belongs to the student.

Several factors contribute to scores for each query that result in these
particular rankings. Some of the problematic constructions in the lower-
ranked analyses are as follows: the three lower-ranked analyses include de-
terminer phrases that do not contain nouns; the third and fourth analyses
use continent without a determiner; the fourth also uses highest peak with
no determiner.

Figure 8 shows the final logical form derived for this query (following the
correct syntactic analysis) and an English paraphrase that refiects the chosen
quantifier scoping. All the single predications (e.g., (PEAK PEAK1)) and
relations (e.g., (PKCONT-CONTINENT-OF PEAKS CONTINENTZ2)) were
originally associated with nodes of the parse tree. The pragmatic functions
(described in more detail in Section 3.4) change the genitive continent’s into
the relation PKCONT-CONTINENT-OF, which encodes the relationship
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TEAM>Show each continent's highest peak.

SHOMW ERCH CONTIMENT GEN EST HIGH PERK .
four parees were found
{IMPERATIVE (ALL +HORLDC-CONTINENT+2
{ +HORLDC-CONTIRENT+ +KORLDC-CONTIMNENT+2)
(THE +PERAK+1
(RND (+PERKe <PERK+1)
{{(sSUPERs (xMORES =HIGH))} +PERK+S
(AND (+PEAK+ «PERK+5)
{*PXCONMT-COMTINENT~DF «PERK+S «HORLDC~CONTIHEHT+2)))
+PERK*1})}
{s5HOW +YDU+¢ +SPERKERe +PERK+1))))

FOR EVERY COHMTIHNENT
FOR THE UNIQUE PERK
BUCH THART THE PEAK 16 THE HIGHEST PERK BUCH THAT
THE CORTIMENT IS CONTIMNENT OF THE PERK
YOU EHOW EPERKER THE PERK.

Figure 8: Logical Form for Example 1

between a peak and the continent containing that peak. The quantifier
scoping algorithm (see Section 3.3)gives the highest ranking to the reading
in which eackh continent outscopes the highest peak (so that Everest is not
the only answer).

Figure 9 shows the simplified logical form that is sent to the database
component, its English paraphrase, and the SODA query derived from the
logical form by the schema translator (described in detail in Section 3.6).
The logical form must be simplified because the language component can
represent more kinds of information than the database query language can
handle. Thus, as previously noted, imperatives are turned into queries. The
simplifier also turns all definites into indefinites; since TEAM does not have
a discourse component, indefinites and definites are treated alike.

There is only one parse for Example 2, shown in Figure 10. The predicate
adjective phrase higher than Fuji is treated as higher than Fuji fis]. Whereas
show in Example 1 is a verb that is built into TEAM, contain in Example
2 is a verb that was learned during acquisition. Such syntactic properties
ag transitivity and possibility of use in the passive form were derived from
answers supplied in the verb acquisition dialogue. Section 3.1 describes this
acquisition process in detail, discussing the various kinds of information that
need to be acquired.

The logical form for this query is shown in Figure 11. It illustrates several
aspects of semantic and pragmatic processing. First, note that the predicate
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Logicel Forn transforned for DB:
(OUERY (ALL +WORLDC-COMTINENT+2
{+HORLDC-CONTINENT+ «HORLDC-COMTIHEHT+2)
{lH +PERKs1
{RHD {+PERK+ «PERK+l)
{{(s5UPERs {sHOREx sHIGH)) +PERK+S
(RHD (+PERK+ *PERKs+S)
{sPKCONT~CONTINENT-OF +PERK+S «KORLUC-CONTINENT«2))}
+PEAK+1)}
1))

FOR EVERY CONTIHENT
WHAT I6& ERCH PEAK
EUCH THRT THE PERK 15 THE HIGHEST PERK BUCH THRT
THE COHTIMENT IS5 CONTINENT OF THE PERAK?

Sods Query:
((IN £:81 COMT) (MAK (®:%3 PEAK~HEIGHT)
(XN &:%2 WDRLDC)
{IN 1:¢3 PERK)
({(2:$3 PERK-COUNTRY) EQ (#:#2 HORLDC-HAME))
((®:82 HORLDC-COMTINENT) EG (®:¢1 CONT-NRHE)))
(7 (#:%1 CONHT-HAME)}}
(7 (9:#3 PERK-HEIGHT))
(7 (¥:$3 PERAK-HAHE)))

Figure 9: Simplified Logical Form and SODA Query for Example 1

NORTHERN applied to a country uses the virtual relation HEMIC linking
countries and hemispheres through an implicit join of the CONTINENT feld
of WORLDC and the NAME field of CONT, Whether this predicate applies
to countries or to continents is ambiguous, but the decision as to which in-
terpretation is appropriate can be made in one of two places-by DIALOGIC
or by the schema translator. Because the decision does not affect the logi-
cal form for the query {the semantic and pragmatic processes require only
that the argument be one of the appropriate sorts), it is left to the schema
translator.

The definition of the predicate NORTHERN in the database schema in-
cludes the information that the predication (NORTHERN 1z) is equivalent
to the predication (HEMIC-HEMI-OF z N] if the sort of zis COUNTRY and
to the predication (CONT-HEMI-OF =z K] if the sort of zis CONTINENT.
In this case, because NORTHERN is applied to a country, the first equiva-
lence holds. The predicate definition of HEMIC-HEMI-OF states that the
predication (HEMIC-HEMI-OF z y) corresponds to the [virtual] database
relation (HEMIC z y). The database schema also includes the information
that this virtual database relation corresponds to the join of (WORLDC
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PREDICATE

VP
NP
WHNP
HOMHD
PRENDMF/\ NOMHD
| I
ADJP NOUN /ucuu\ A

VPT DF ROUN  ENDPUNET
WHDET ADJ UTERAL-S T v UTEFllN.-S T EIH .A.Ill.l THIAN I]I LJTETN_'!
WHAT  HORTHEAN -5 COUNTRY CONTAIN -5 PEAX ER HIGH THAN FWJI T

Figure 10: Parse Tree for Example 2

% +-+ z---) and (CONT z --- y). Together this information specifies the
translation of the logical form into the database query shown in Figure 12.

Second, the logical-form fragment
(AND (PEAK FUJIj) (PEAK-NAME-OF FUJI{ FUJI))

illustrates the coercion (described in Section 3.4) of a name (Fuji) into the
thing it names (a mountain}; this is necessary because the height predicate
is to be applied to the mountain, not its name. We cannot treat the name
as being identical to the mountain itself, as it would then not be possible to
answer queries like

What is the name of the highest volcano in Japan?

Finally, from the information about contain gained during acquisition,
TEAM determines that the query is asking for peaks that are in countries and
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TEAM>
TEAM>Uhat northern countries contsi{n peaks higher than Fuji?

MHAT HORTHERN -§ COUNTRY CONTAIN ~-§ PEAK ER HIGH THAK FUJI ?
exactly ont parse wes found
(QUERY (HH <COUHTRY+1
{AND (+COUNTRYs +COUNTRY+1)}
(#NORTHERH +COUNTRY<1))
{THE *FUJI-4
(RND {+PERK+ +FUJI-4)
(*PERK-HAME-OF +FUJI-4 <FUJI+)})
{508E THINGA
(+PERX-HEIGHT+ THING3)
(SOHE +PERK+2
(+*PERKs +PERAK+2)
(AND (3PEAK-HEIGHT~OF +FUJI-4 THING3)
{ (*HORE12 $HIGH) +PERAK+2 THING3)
{3CONTAIN +COUNTRY+1 +PERK+2)7})})))

WHAT IS ERCH COUNTRY
SUCH THRT .
BOTH THE COUNTRY 1B MORTHERN
AND
FOR SONE HEIGHT AND PERK
BOTH THE HEIGHT IS HEIGHT OF THE PEAK NRMED FUJI
AND THE PEAK IS HIGHER THAN THE HEIGHT
AND THE COUNTRY CONTRINS THE PEAK?

Figure 11: Logical Form for Example 2

not vice versa. The details of translating the logical form for this example

to a SODA query are given in Section 3.6.
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Logical Forn transforned for DB1
(QUERY (KH +COWRITRY+1
(RND (+COUNTRY+ +COUNMTRY+1)
(SHORTHERN *COUNTRY*1))
{GONE +FUJI-4
{RND (+PERK+ <FUJI-4)
(tPEAK-NAME-QF +FUJI-4 +FLJIe))
(SONE THINGI
{+PEAK-HEIGHT+ THING3)
{SONE +PEAK+2
(+PERX+ +PEAK+2)
(RHD (tPERK-HEIGHI-OF <FUJI-4 THING3)
{{sHORE12 3HIGH) <PERK+2 THING3)
(sCONTAIN +COUNTRY+1 +PEAK+2)))))))

AT IE ERCH COUNTRY
SUCH THAT
BOTH THE COUNTRY IS5 MORTHERH
AND
FOR SOHE HEIGHT AND PERX _
BOTH THE HEIGHT 18 HEIGHT OF PERK MANMED FLII
RND THE PEAK IE HIGHER THARNH THE HEIGHT
AND THE COUNTRY CONTAINS THE PEAK?

Boda Duery:
{((IN #:81 COMT) ((®:1%1 CONT-HENI) EQ H)
(IN 2:%2 MORLDC)
((8:$2 WORLDC-CONTINENT) EQ (H:81 CONT-NAME))
(IN 8:83 PERK)
{(%:$3 PERX-HANE) EQ FIUI)
(IN 8:84 PEAX)
((8:84 PEAK-HEIGHT) CT (&#:$3 PEAK-HEIGHT))
{(n:84 PERK-COUNTRY) EG (8:82 WORLDC-HANE))
(? {(8:83 PERK-HEIGHT))
(7 (B:84 PEAK-HRNE))
{7 (R:%4 PEAK-HEIGHT))
(? (8:82 KORLDC-HRME)))

Figure 12: SODA Query for Example 2
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3 Specific Problems

This section includes more detailed discussions of several technical problems
addressed in the course of constructing the TEAM system. We begin with
two constructs that cause problems for acquisition: verbs (Section 3.1) and
feature fields (Section 3.2). Verbs are an essential part of natural language;
adequate acquisition is an especially difficult task because the DBE cannot
be assumed to know explicitly linguistic-theoretical information about their
subcategorization. Feature fields encode complex relations between objects
and properties; they represent a case in which the gap between the user’s
conception of the world is quite different from the database encoding of
information. Next we discuss some general problems in natural-language
processing — e.g., quantifier scoping (Section 3.3), noun-noun modification
(Section 3.4), lexical ambiguity (Section 3.5). The methods used for han-
dling these constructions differ from previous work, and were specifically
designed to depend only on the kinds of domain-specific information that
could be acquired from a DBE. Finally, we look at a group of problems that
arise in the transformation of the logical form for a natural-language query
into an appropriate and efficient database query (Section 3.6); in showing
how these problems are handled, we provide a detailed description of the
schema translator.
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WORLDC

NAME CONTINENT | CAPITAL | AREA POP
Afghanistan | Asia Kabul 260,000 | 17,450,000
Albania Europe Tirana 11,100 | 2,620,000
Algeria Alrica Algiers 919,951 | 18,510,000

Figure 13: The WORLDC Relation

3.1 Verb Acquisition

Some of the most interesting aspects of the TEAM acquisition process are il-
lustrated effectively by examining the process of verb acquisition, which con-
tributes information to the lexicon, the conceptual schema, and the database
schema.

The capability of using a wide range of verbs in queries is essential to a
good natural-language interface. Most NLI systems offer the capability of
using the two general verbs “have” and “be,” thereby making it possible to
pose such queries as “What countries have an area greater than 3 million
square rniles?” and “What peaks are more than 10,000 feet high?” How-
ever, there are other (in many cases much more natural) ways of asking the
same question that require the use of different verbs. For example, an end
user may ask “What countries cover more than 3 million square miles?” If
an NLI is capable of answering only the two former queries, then the end
user must learn that the latter is not allowed; more important, such con-
straints frequently reflect the need for the end user to know some details of
how information is structured in the database. If the range of “acceptable
English” is so small as to exclude most verbs, then the end user is better
off learning a formal query language; natural language will not be very use-
ful. Therefore, the ability to acquire and use arbitrary verbs is absolutely
essential to TEAM’s objectives, regardless of the difficulties involved.

The behavior of English verbs is very complex, a fact reflected in the
difficulty of acquiring new ones. For each verb, TEAM must discover how
many arguments it has and whether or not these arguments are optional;
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how the arguments map onto various cases (e.g., subject, object); the kinds
of prepositional phrases that can be used with the verb; whether passive,
unaccusative, and dative constructions are permitted; and if there are any
particles and whether they are separable. The acquisition component asks
a series of questions based on a classification of verbs developed by Levin
[17]. In addition, if there are any irregular forms of the verb, they must be
added to the lexicon. Finally, the database schema must be updated with
information that relates the verb predicate to the underlying database.

Fortunately, the fact that the verbs are being used to answer questions
about a relational database makes the acquisition problem somewhat sim-
pler. For example, the arguments to the verb predicate will always be val-
ues of some field in some relation and therefore refer to objects and not
propositions. Therefore, no verb will ever be used that requires a sentential
complement, and TEAM does not acquire such verbs.

To describe how TEAM determines the properties of a verb, we will con-
sider the database illustrated in Figure 13 and the aquisition of the verb
cover to relate countries and their areas, as in the question “What coun-
tries cover more than 1 million square miles?” Proceeding as illustrated
in Figure 14, the database expert enters a new word “cover” and answers
the question about its syntactic category by saying that it is a verb. Next
TEAM asks three questions to determine the verb’s third-person singular,
past, and past-participle forms. In this case, TEAM’s defaults of “covers,”
“covered,” and “covered” are the correct answers to the respective questions.
Any irregularities supplied by the answers are inserted into the lexicon for
morphological analysis.

The next question asked is the most important, since TEAM extracts
a great deal of both syntactic and semantic information from the answer.
TEAM asks the database expert to use the verb in a declarative sentence
with indefinite noun phrases in the most general manner in which it can
ever be used in a query. In the case of the example under consideration, the
database expert uses the active-form sentence “A country covers an area.”
This response tells TEAM several things: {1) Cover is a transitive verb.
(2) A pew predicate, COVER, must be added to the conceptual schema.
It has two arguments, the first of sort COUNTRY and the second of sort
AREA-MEASURE. (3) The subject of the active-form sentence is mapped
onto the first argument, and the object is mapped onto the second argument.

In a geography database with a relation about rivers, their country of
origin, and the body of water into which they ultimately flow, one might
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Past tense - COVERED

Pasl participle - COVERED

Semence - A COUNTRY COVERS AN AREA

‘AN AREA COVERS.' <=> ‘Somelhing COVERS an AREA.' YES NO

‘A COUNTRY COVERS.' <=> ‘A COUNTRY COVERS something.’ YES NO
‘AN AREA is COVERED.' <«> 'Something COVERS an AREA_' YES NO

Figure 14: Acquiring the Verb “cover”

acquire the verb flow by specifying the sentence “A river flows from a country
into a sea.” This question would tell TEAM that the conceptual schema is
to be augmented by the predicate FLOW of three arguments, a RIVER, a
COUNTRY and a SEA, that the second and third arguments to the predicate
are indicated by the prepositions from and to, and that flow is an intransitive
verb.

If a verb can be followed by prepositional phrases, TEAM must discover
whether the preposition behaves as a particle or is supposed to mark a prepo-
sitional phrase. Verb-particle combinations are quite common in English.
For example, one can say “A man drove down the street,” but one cannot
say “A man drove it down,” so in this case, down the street is a prepositional
phrase. On the other hand, if “A driver ran down a pedestrian,” one can say
«A driver ran him down;” here down behaves as a particle, and o pedestrian
is the object of the verb rather than the object of a prepositional phrase.
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TEAM gathers this information by presenting the database expert with a
sentence that uses the preposition following a suitable pronoun for the noun
phrase referent, and then asking him if the sentence sounds acceptable.

There is still information that TEAM needs to acquire about the verb
cover before its acquisition is complete. With many verbs, some of the argu-
ments to the underlying predicate are optional and may be omitted in the
sentence. In such situations, the mapping of the remaining arguments onto
the underlying predicate may be different. TEAM needs to discover what
these possible differences are. For example, in a database about wines and
their producers, one can acquire the verb produce with the sample sentence
“A vintner produces a wine in a region?” and later ask “What regions pro-
duce Chardonnay?” In this case, the region appears in subject position, but
it 18 not the agent in the underlying predicate. The logical form for that
query is paraphrased as “What is each region such that, for some vintner,
the vintner produces Chardonnay in the region?”

To acquire this information for cover, TEAM presents the DBE with
some sample sentences and asks if they are correct. TEAM asks whether “A
country covers” can mean the same thing as “A country covers something,”
just as one can say “A man eats” to mean “A man eats something.” Coveris
always transitive, and must have two arguments, so in this case the answer
is no. The next question, can “An area covers” mean “Something covers an
area,” just as “A crop grows” can mean “Someone grows a crop,” is answered
no for the same reason. The final question, can “An area is covered,” mean
“Something covers an area,” seeks to find out whether the verb can be used
in the passive form.

This example of verb acquisition provides one with insight into some of
the considerations that were taken into account in adapting the acquisition
component to the database expert. The primary strategy is, so far as possi-
ble, to focus the interaction on the structure of the database, to extract as
much information from each answer, and to avoid confronting the database
expert with questions that require any sophisticated knowledge of linguistics
or the inner workings of DIALOGIC or TEAM.
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3.2 TFeature Fields

Much of the effort put into developing TEAM has concentrated on the prob-
lem of how to bridge the gap between the end user’s conceptual view of the
domain and the actual structure of the relational database. This problem is
especially severe with feature fields.

Feature fields occur in relations in which each tuple describes some in-
dividual object in the world. A binary feature field can contain two distinct
values, depending on whether or not some particular property of the object
described by that tuple holds. For example, in the relation deseribing vari-
ous mountains of the world depicted in Figure 1, the field VOL is a feature
field that can contain the character Y if the mountain is volcanic, N if it is
not.

Feature fields present a particularly difficult problem for a transportable
system because of the very large number of alternatives that are possible in
English for stating that an object has or does not have a certain property. As
an example of an especially troublesome case, one database about military
ships had a field DOB, with values Y or N, whose conceptual interpretation
was whether the ship described by the tuple did or did not have a doctor on
board. In this case the gap between the conceptual schema and the database
schema is particularly wide because the database collapses two conceptual
predicates — that of being a doctor, and that of being on board a ship —
into a single bit of information in the DOB field.

There are quite a few syntactically complex questions that one might ask,
such as “Is there a doctor on board each ship in the North Atlantic?” In
this query, “a doctor on board” is not a constituent noun phrase; therefore,
simply associating a phrase with the conceptual predicate is insufficient.
Other queries, like “Is there a doctor within 500 miles of Naples?” require
separating the doctor concept from the on board one, and involve more
complex reasoning capabilities than are available in most NLIs.

The difficulties this example illustrates are also problems for designers
of custom NLIs {23]; they do not arise from transportability In TEAM, our
approach has been to identify as many regularities as possible in the use of
feature fields and devise an overall strategy that will bridge the gap between
the conceptual and database schemata in as many cases as possible. Four
alternative ways of linking conceptual predicates to feature fields have been
identified — by means of adjectives, abstract nouns, common nouns, or
intransitive verbs — and these seem to suffice for many references to feature
fields.
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Figure 15: Feature Field Acquisition

Figure 15 illustrates an acquisition of a feature field. TEAM first prompts
to find out the two possible values that can occur in this field. Next the
DBE must specify how end users are going to refer to the feature, which of
the four forms of expression are possible.

Adjectivals are used to modify a noun phrase referring to members of the
relation’s subject sort. The modification is designed to restrict the reference
to those members who possess (or do not possess) the property. For example,
the adjective volcanic applies to any mountain that is described by a tuple
with a Y in the VOL feld of the PEAKS relation,

Abstract nouns refer to some abstract property or quality that members
of the relation’s subject sort possess if they have the appropriate value in
the feature field. A property possessed by a mountain described by a tuple
with a Y in the VOL field is volcanism, which is supplied in Figure 15 as an
answer to the question about positive abstract nouns.
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Each feature field divides the relation’s subject sort into two disjoint
subsorts, one for each value of the feature. The database expert can spec-
ify cormmon nouns that refer to individuals of one of these two sorts. For
example, if a tuple has a Y in the VOL field, it describes a volcano.

Finally, feature fields can be referred to by intransitive verbs whose sub-
ject is a member of one of the two subsorts induced by the feature field.
The option of specifying an intransitive verb is handled by verb acquisition,
rather than as part of acquiring the information associated with the feature
field itself. Figure 16 illustrates the process of acquiring the verb ervpt. The
database expert first acquires velcane as a common noun for the subsort of
mountains represented by Y feature field values. Then, when asked for a
sentence for the verb erupt, the database expert says “A volcano erupts.”
From this information TEAM deduces that all things that erupt are volcanos
and can then answer questions like “What mountains in Europe erupt?” by
listing all the volcanos in Europe.
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Figure 16: Acquisition of an Intransitive Verb
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3.2 Quantifier Scoping

One of the problems TEAM must resolve is what relative scope to give
to the quantifiers in logical form corresponding to determiners in natural
language (e.g., each, every, some, all, ...}. In fact, scoping applies not
only to quantifiers, but also to operators (including negation, tense, and
modal markers) and superlatives. While the scope of the LF quantifiers
often corresponds to the left-to-right order of the determiners in the surface
sentence, other orders are at times intended. Because English is not entirely
compositional, the obvious plan of composing the logical form as a result
of recursive calls from the translators (and thus rigidly following the tree
structure of the syntactic parse) is not adequate to the task. For example,
sentences 6 and 7 below have the same parse tree structure, but require
different relative scope for the quantifiers of “country.”
(6) Show the highest peak in each Asian country.
(7) Show the highest peak in an Asian country.

To determine the appropriate scoping, a method must be employed that
uses the information about the tree structure, but balances it with other
considerations.

3.3.1 How TEAM Determines Quantifier Scope

TEAM uses the syntactic parse tree as the framework from which to derive
all the possible scopings; it then ranks these, using additional considerations.
The basic strategy follows Hendrix [12], but includes several modifications.
TEAM associates two kinds of information with each determiner: a quantifier
strength and an associated logical-form quantifier. The overall algorithm is
of the classic generate-and-test type; possibilities are generated based on the
structure of the parse, and a combined score from specialists (called scope
critics) provides the test. The test produces a ranking of all candidates
rather than rejections of some. The combined score allows any critic to
“gverrule” any other critic whenever the first critic has a stronger judgment
to apply. _

During semantic translation, calls by the translators to the basic se-
mantic functions cause logical-form fragments (LFF) to be associated with
certain nodes of the parse tree. These LFF markings include predicates
for verbs, adjectives, and prepositions; sort assertions for variables derived
from nominals; quantifier markings derived from determiners, and proposi-
tions associated with verb phrases. The quantifier marking includes both

35



a logical-form quantifier and a quantifier strength (see below). LFFs are
deposited on the relevant tree nodes rather than being collected into a com-
pleted logical form; collecting them compositionally would defeat our efforts
to support the noncompositional determiner uses in English.

Throughout semantic processing, about one quarter of the nodes in a
typical syntax tree will be marked with an LFF. While the remaining nodes
have served as “glue” in the original sentences, only the marked nodes carry
information important for semantic processing from this point on. After
semnantic translation and the first pass of pragmatics (called first-stage prag-
matics) have been applied, the parse tree is traversed by a process that links
up the marked nodes to produce the subtree of interest to the remaining se-
mantic and pragmatic processes, and assigns an ordering to the nodes in
this subtree. The traversal (and hence the ordering) is done in a top-down,
depth-first, left-to-right fashion; the result iz an ordering that corresponds
to the default left-to-right interpretation of the determiners in the sentence.

The nodes of the subtree are collected into a list and divided into two cat-
egories: those that require relative scoping computations and those whose
scoping is determined entirely by their surroundings. The first group of
nodes, called mobile quantifiers, includes all the nodes derived from deter-
miners. The second set contains all the sort specifications of nominals, all
the predications, and all quantifiers that are known to be allowed only the
closest possible scoping (e.g., those generated to go with variables associated
with proper names). Some nodes can appear in both collected node lists.
This is the case for WHNP nodes, like the one for “what” in the sentence
“What is the highest volcano?” The WH quantifier and the source of the
implicit “thing” from “what thing” are both associated with the same node
in the tree.

All the potential alternative scopings are generated by permuting the
mobile nodes in the node list and generating the logical form that would
correspond to each permutation. Because this method yields n! possible
alternative scopings for any query having n quantifiers, restricting consid-
eration to the mobile ones reduces the computational effort significantly.
The scoping procedure tries to generate logical forms corresponding to all
n! node orderings, but exceptions are taken into account to further constrain
the number of possibilities.

The first exception occurs when there is a sequence of existentially quan-
tified variables with nothing intervening (e.g., SOME z ... SOME y ...).
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Because all the permutations would be logically equivalent,'®the generation
routines are designed to generate only one of these equivalent scopings. The
other exception is to rule out those variations in node orderings that cause
variables to appear outside the range of their scoping.

An additional filter is applied to any query in which the determiner
“any” appears. This filter allows TEAM to handle one of the many difficult
behaviors “any” exhibits. The mapping of “any” to a predicate calculus
quantifier depends on its immediate context. Either a negation or a query
marker within the same clause as “any” changes its mapping. Typically any
maps into predicate caleculus ALL, but in this situation it maps to predicate
caleculus SOME; This difference is illustrated by the sentence pair:

(8) “I can lick any man in the bar!” — For ALL man in bar ...
(9) “Can I lick any man in this bar?.” — Does there exist SOME man ...

This is a hard rule rather than a preference, so TEAM enforces it at the
point of generating the logical form, not in the any-rule critic (discussed in
the next section).

3.3.2 The Scope Critics

As a result of the generation process, a set of alternative logical forms is
available; all are logically possible interpretations, and TEAM uses other
kinds of information to select more closely among them. In particular, each
of the relevant scope critics assigns a score reflecting the critic’s assessment of
the particular proposed ordering of quantifiers (and other operators). Thus,
the scope critics are essentially functions which embody TEAM’s heuristics
for “correct” scoping of English.

The scope critics are specialists; if a particular logical form does not
contain an instance of whatever the critic specializes in, it assigns a score
of zero. Positive scores indicate increasing approval, negative scores disap-
proval. The critics currently used by TEAM are left-right, quantifier strength,
any-rule, what-some, and superlative.

The left-right critic is relevant to all candidate logical forms. It uses the
node ordering assigned earlier by the recurzsive tree traversal to compute the
degree to which the proposed ordering deviates from the default left-right
ordering. This critic deducts points for each deviation from the order of the
original node ordering; if no other considerations arise, this ordering will be
the one preferred.

19This is equally true for a sequence of universally quantified variables, and TEAM treats
them the same way; however, such sequences occur infrequently.
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The gquantifier strength critic is also relevant to most logical forms. As-
sociated with each determiner is a value that represents its relative strength
(with stronger determiners tending to outscope weaker ones). The quantifier
strengths in TEAM are similar to those used by Hendrix [12]. The values
are all relative; the ranking imposed by them is illustrated by considering
those of some of the most common determiners: bare plural is 0; plural
numbered, possessive adjective, and “some” are 5; “the,” “a,” “either,” “ev-
ery” and “none” are 10; “which,” “neither,” and “no” are 15; “who” and
“what” are 25; “any” is 35. The strength critic uses these values to judge the
appropriateness of the relative scoping strength of the quantifiers. It looks
for cases in which the scope of one quantifier encloses the scope of another,
and it adds points to the overall score if the determiner corresponding to
the outer quantifier is stronger than that of the determiner corresponding to
the inner one (it deducts points in the converse case). This metric serves to
encode the tendency of strong determiners to extend outside the scope that
a strictly compositional reading of a sentence would have produced. For
instance, although the English determiners each and al! produce the same
logical-form quantifier ALL, each has a strength of 30 and all has a strength
of 10. Thus, the quantified variable associated with “each” is more likely
to outscope a lexically surrounding expression than if the word used had
been “all,” Likewise, the quantifier strength critic supplies the knowledge
to differentiate the following two queries:

(10) “Who is the boss of all buyers” (One boss for many buyers implied)
(11) “Who is the boss of each buyer?” (Perhaps as many bosses as buyers implied)

The what-gome critic is specialized for the database application served
by TEAM. Logically the predicate calculus quantifiers WH and SOME are
the same. However, the values of a variable bound by a WH quantifier
must be shown in the answer to the query, whereas the values of variables
bound by SOME quantifiers should not be shown. Therefore, it is preferable
to have the WH variable outscope the SOME variable for cases that would
otherwise be equivalent; such cases can arise when the left-right critic and
the strength critic have competing preferences. This critic ensures that the
plain existentials are inside the database restrictions — rather than outside,
where they might implicitly cause additional search passes over the database.

The what-some critic is useful in sentences like:
(12) “What peaks have a height greater than 10000 feet?”

Although other parts of the database-query-generation system might
intervene to optimize the query later, the what-some critic endeavors to
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choose a logical form close to the form of the optimized database query.ll

The two possible logical forms for this query would differ considerably in

their efficiency. In the preferred logical form, peaks are selected and tested

to see if their height exceeds 10,000 feet; in the other one, heights above
10,000 feet are generated, and then all peaks are tested to determine whether

the generated height coincides with theirs.

(13)opposed — (SOME k (HEIGHT k) (WH p (PEAK p) (PEAK-HEIGHT p h)))
(14) preferred — (WH p (PEAK p) (SOME k (HEIGHT k) (PEAK-HEIGHT p h)))

The any-rule critic embodies one of the special rules concerning the En-
glish determiner any; the correct scoping for a query including this deter-
miner generally requires at least one degree of perturbation of the default
left-right scoping order of the sentence. The quantifier in logical form derived
from “any” should outscope at least one quantifier that would otherwise sur-
round it. The any-critic tests for this condition in any logical form derived
from a sentence using English “any” and adds its vote to the overall scoping
score — positively if at least one other quantifier has been outscoped by the
quantifier derived from the “any,” negatively otherwise.

To see the any critic at work, contrast the rephrasing done by TEAM
for the two sentences below. In both cases the quantification of “capital”
ig existential, but, in the sentence using “any,” the variable for “capital” is
forced to outscope the variable for “country.”

(15) “Is every country governed by any capital?”
For some capital, does the capital govern every country?

(16) “Is every country governed by some capital?”
For every country, does some capital govern the country?

The superlative critic applies only to sentences that contain superlative
expressions. The critic simply tries to keep the scope of the quantifier of
the superlative’s head variable (the LF quantifier corresponding to the de-
terminer “the” in a phrase like “the biggest one I ever saw”) outside, but
as close as possible to, the scope of the superlative itself (the scope that
includes all the selectional criteria for the domain within which the superla-
tive applies). This expresses the heuristic that we wish to encourage all the
restrictions applying to the head variable of a superlative to reside within

U This is important, since TEAM provides an English rendering of logical form so that
the end user can determine whether the gquery has been analyzed correctly. Because
optimizations by the database query generator will not be shown to the user, queries
that seem very inefficient may be reasonable to run despite their apparently poor design.
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the scope of the superlative’s domain specification. As an example, consider
the following sentence:

(17) “What is the largest country that has a peak taller than Fuji?”
The superlative scope critic will prefer scopings where the pool of countries
from which the largest is to be chosen will be exactly those countries con-
taining peaks higher than Fuji, With the superlative critic disabled, TEAM
prefers a scoping in which a randomly selected peak that is taller than Fuji
is found, and then the largest country that contains that peak is chosen.
With the critic, TEAM will give (17) the reading

What is each country such that

the country is the largest country such that

for some peak that is taller than the height of the peak named
Fuji

the country is the country of the peak?

In contrast, without the superlative critic the reading would be

What is each country such that

for some peak that is taller than the height of the peak named
Fuji

the country is the largest country such that

the country is the country of the peak?

Any new rules to determine correct scoping would be added as additional
scope critics. The scores from all the critics are summed with a weighting
(which is currently neutral) to produce an overall scoping score for each
candidate logical form. The alternatives are ranked and presented to the
end user, with the highest-ranked one representing the best guess as to
correct scoping.

3.3.3 Scoping Problems

Even the fairly elaborate and comprehensive mechanism in TEAM fails to
generate the correct scoping for some sentences. For the hardest of these,
pragmatic information specific to the domain may be essential to deriving
the correct reading; in some cases pragmatic considerations may override
the rules of thumb that are embodied in the TEAM scoping mechanism. For
example, if an end user asks TEAM:

(18) “What is the height of all the peaks in Nepal?”
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TEAM will build a query that searches for some unique height that happens
to be the height of all the peaks in Nepal. While this is a correct scoping
for similar sentences {consider “Who is the commander of all the troops?”),
a human would never produce such an interpretation because of the prag-
matic information that peaks each have their own individual heights. The
acquisition and use of such pragmatic information here beyond the goals of
this effort.

3.3.4 Other Scoping Algorithms

Although an exhaustive comparision of quantifier scoping algorithms lies
outside the purview of this article, we can nevertheless compare some as-
pects of the TEAM algorithm with those of LUNAR [38,37] and Chat-80
[22,35]. These are two other systems that incorporate detailed analyses of
the quantifier scoping problem and in which the problem of selecting plau-
sible scopings has been addressed.

The main difference between the TEAM algorithm and those of both LU-
NAR and Chat-80 is that TEAM generates and compares all possible scop-
ings, whereas LUNAR and Chat-80 apply some set of scoping rules repeat-
edly to an intermediate representation to produce a final logical form that
satisfies all the relevant scoping rules. In other words, LUNAR and Chat-
80 use “first fit” algorithms, whereas TEAM uses a “best fit” algorithm.!2
Unfortunately, the complexity of both kinds of algorithms precludes any an-
alytic comparison, nor is there enough controlled data for a full empirical
comparison. It is possible, however, to discuss how certain specific problems
are handled by the three algorithms.

As explained above, the TEAM scoping algorithm generates a set of pos-
sible scopings and then applies a system of scoring rules uniformly to the
scopings to choose the best candidate. In contrast, the scoping mechanisms
of LUNAR and Chat-80 are part of their logical form construction rules. In
LUNAR, scope preferences are encoded in specific rewrite rules that look
for certain intermediate representation patterns, such as that corresponding
to the interaction between a general determiner and negation. The Chat-80
scoping algorithm takes an intermediate representation tree with determin-
ers in their original syntax-determined positions, and “percolates” each de-
terminer up the tree as far as it will go, given a table of scope preferences
between individual determiners. The order of tree traversal and determiner

3By analogy with dynamic storage allocation algorithms [15, Section 2.5].
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percolation achieve an effect similar to that of the bubble sort algorithm
(with the ordering governed by the relative strengths of the determiners).

Syntactic structure and empirical quantifier strength information are
insufficient to determine the preferred scoping in all cases. Given this limi-
tation, which is shared by all the algorithms under consideration, the next
best comparison criterion for scoping algorithms seems to be the freedom of
expression allowed by the algorithm. That is, given an intended meaning,
would there be a sentence to which the analysis and interpretation processes,
including the scoping algorithm, would assign that intended meaning.

For instance, LUNAR uses the functional nesting of phrases to decide
scope (function arguments have wider scope) whereas TEAM and Chat-80
use left-to-right ordering and quantifier strength to determine scope. Con-
sider the query (19) Who is the owner of every grocery store in Pale Alto?
A system relying on functional nesting will assign the same wide scope
to the universal quantifier, independently of the determiner used in
that position. However, the intended meaning could be the one in
which one is asking whether there is a grocery monopoly in Palo
Alto. In systems like TEAM or Chat-80, it would be possible to
convey either meaning by choosing determiners of different strengths:
(20) Who is the owner of each grocery store in Palo Alto?

(21) Who is the owner of all grocery stores in Palo Alto?

LUNAR and Chat-80 are stricter than TEAM in the treatment of deter-
miners in relative clauses. TEAM allows orderings in which determiners are
moved outside a relative clause to be considered, provided that the ordering
does not leave dangling (unbound) variables; LUNAR and Chat-80 restrict
the scope of any determiner from a relative clause to that clause. Both ap-
proaches have been proposed in the linguistic literature, but the pertinent
evidence is very difficult to evaluate [33].

The three algorithms also differ in their treatment of specific determiners.
For instance, TEAM usually translates “any” as an existential quantifier that
outscopes at least one other quantifier, whereas Chat-80 always translates it
as a wide-scope universal quantifier. Although the two solutions seem very
different on the surface, for most examples they produce the same results.
This is because in Chat-80 a question is translated as the antecedent of
an implication. The universal quantifier translating “any” outscopes the
implication and binds no variables in the consequent of the implication,
which makes the logical form equivalent to one in which the quantifier for
“any” is an existential quantifier with just the antecedent of the implication
as ite scope. The logical form produced by TEAM for the same question will
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correspond to just the antecedent of the one produced by Chat-80 and, in
most cases the quantifiers will appear in the same order.

LUNAR and Chat-80 have specialized rules to deal with aggregation
words such as “average” and “total” by turning their arguments into con-
structors of sets on which the aggregation operation is to be performed. This
problem was not addressed in TEAM; in fact, the specialized rules it requires
do not fit well in a generate-and-test mechanism with uniform scoring.
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3.4 Pragmatics and Coercion

Although the pragmatic component of TEAM addresses but a small set of
issues, it nonetheless does solve a number of problems that are both inter-
esting and essential to the goal of practical language understanding.

3.4.1 Resolving Vague Predicates

English abounds with predicate-producing words (verbs, adjectives, preposi-
tions, and perhaps adverbs) that have a clear predicate-argument structure
but do not completely determine a domain-specific predicate. The words
“in,” “with,” “has,” and “of” in the following sample queries illustrate this:
(22) “Show the country in Europe with the highest peak.”

(23) “Which continent kas a peak with a height of 15500 feet?”

In TEAM, “of” (and other prepositions that have not been given domain-
specific meanings by acquisition), “is,” “have” and “do” (the generic verbs),
noun-noun pairs, and the genitive all produce predicates that are processed
in the syntactic and early semantic modules in the same manner as those
predicates that have a domain-specific meaning. These vague predicates are
then replaced by more specific predicates when later semantic or pragmatic
processing succeeds in determining how they are used in a particular query.
The predicate chosen is determined by specialist routines that may be called
at one of three times: at the end of semantic processing for a clause (se-
mantic specialists), before the LFFs are collected from the tree (first-stage
pragmatics) or after the logical form is collected (second-stage pragmatics).
The complete list of specialist functions is given in Figure 17; currently all
of the pragmatic specialists are invoked as first-stage pragmatics.

The Is-Semantics specialist is associated with the predicate IS and prop-
agates sort restrictions acrogs all the variables that are being equated by the
IS assertion. This specialist is invoked before pragmatic processing (hence
the “semantics” label); it attempts to reconcile any conflicts it detects, and
may revise some sort predications as a result. For example, it is used in pro-
cessing the query, “What is the area of Nepal?” to determine that the vari-
able corresponding to the “what” is a WORLDC-AREA, not a CONT-AREA.

The Degree-Semantics specialist replaces the general predicate DEGREE-OF
with a more specific one. This predicate is associated with phrases that
query measures (e.g., “How tall is Fuji?” “Is Fuji taller than Everest?”).
For example, by determining that the predication (DEGREE-OF peak! z)
refers to the predicate PEAK-HEYGHT — i.e., that it is equivalent to the
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SEMANTIC SPECIALISTS Is-Semantics
Degree-Semantics

PRAGMATIC SPECIALISTS Genitive
Noun-Noun
Have
Of
General-Preposition
Time
Location
Do-Specialist
Comparative

Figure 17: Semantic and Pragmatic Specialists in TEAM

predication (PEAK-HEIGHT-OF peak! z) — the specialist allows TEAM
to further constrain the sort of z to be a linear measure, allowing the com-
parative specialist invoked during pragmatic processing to rmake the right
decisions about comparing the heights of two objects versus comparing an
object’s height with a given height value.

The Genitive, Noun-Noun, Have, and Of specialists replace the vague
predicates GENITIVE, NN (for noun-noun combinations}, HAVE, and OF
with more specific ones. The individual specialists differ only slightly from
one another, the differences reflecting special restrictions associated with
each construction. The role of these specialists is illustrated in the examples
of Section 2; their operation is described below.

The General-Preposition specialist is associated with ON, FROM,
WITH, and IN, and converts these predicates into appropriate domain-
specific predicates.  For example, the In-Specialist determines that
the phrase “countries in Asia” means those countries ¢ for which
(WORLDC-CONTINENT-OF ¢ ASIA).

The Time-specialist and Location-specialist serve to map TIME-OF and
LOCATION-OF into predicates that are specifically pertinent to the given
database. They can be invoked obliquely by the WH constructions “when”
and “where.”

The Do-specialist replaces the predicate DO (from the verb “do™) with
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a specific verb chosen from those acquired for a domain. Although in the
database query task “do” does not occur explicitly as the main verb very
often, the translators deduce its presence in some queries, as in “What
countries cover more area than Peru [does|?”

The Comparative specialist examines the two arguments of a comparison
to determine whether it is to be made between two attribute values (e.g.,
Jack’s height and seven feet) or between an entity and some value (e.g., Jack
and seven feet). In the latter case, TEAM tries to identify the appropriate
attribute of the entity (e.g., Jack’s height).

3.4.2 Acquired Relations for Pragmatics

In unrestricted discourse, a vague predicate can stand for a wide variety
of specific relations, depending on discourse context. Fortunately, TEAM
does not have to generate all these possibilities; the acquisition routines
extract from the database expert the specific relations that can be used to
replace a vague predicate. Three different kinds of relations are treated: of-
relations, modification-relations, and coercion-relations. All these relations
are associated with sorts that correspond to various fields in the database.

An of-relation is associated with each sort that corresponds to a field of
a file. Such relations are used to interpret phrases that fit the schema: “the
<field name> of a <file subject>" as corresponding to the LFF (<field-
name predicate> <file-subject variable> <field-name variable>). For ex-
ample, “height” is the name of a field in the PEAKS file given in Section 2;
the sort it corresponds to, PEAKS-HEIGHT, has associated with it as an of-
relation the predicate PEAKS-HEIGHT-OF. As a result, the phrase “the
height of Everest” is represented in logical form as (PEAKS-HEIGHT-OF
EVEREST heightl). Of course, of-relations provide only one possible interpre-
tation for “of”; if our example were “a height of 10,000 feet,” the correct
LFF would be (EQ height? (FOOT 10000}).

This description is somewhat oversimplifed in two ways. First, “height”
need not be the real name of the field; it could be a synonym for the field
name (which, for example, might be HGT). Second, and more important, if
the actual field names were always used, the name of the of-relation predicate
could always be generated by simply tacking the string “-OF” onto the field
name. In most databases containing multiple files, the same sort actually
appears in more than one field. Virtual relations always give rise to such
cases. The TEAM acquisition for sorts includes facilities for merging multiple
names for the same sort; such a merged sort would actually have a list of
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acquired of-relations rather than the unique value found in the simple case.

Modification-relations are associated with those sorts (derived from sym-
bolic fields) for which the DBE has asserted that an element of the sort may
be used to directly modify an instance of the sort corresponding to the file
subject. These relations are especially important for processing noun-noun
pairs and genitive relations. For example, in the WORLDC database, the
DBE had to answer a question for the WORLDC-CAPITAL field that asked
approximately “Will you want to be able to say ‘Paris countries’ to mean
those countries whose WORLDC-CAPITAL is Paris?” An affirmative answer
here would have caused TEAM to associate with the sort WORLDC-CAPITAL
a modification-relation similar to the of-relation. TEAM uses such informa-
tion to rule out inappropriate uses of modifiers (both explicit and implicit)
that would create ambiguities if they were allowed to remain. Because the
database expert would refuse to allow the above interpretation of “Paris
countries,” TEAM is able to reject any parse that assigns a noun-noun con-
struction to that two word sequence. Section 3.4.4 includes more detail on
the treatment of such phrases, while Section 3.4.7 discusses some of the
limitations of this approach.

Coercion-relations are a variant form of modification-relations; they
are not necessarily appropriate for noun-noun substitution, but represent
a useful source of relations for genitive, general preposition, and vague
verb relations. For example, in a hypothetical automobile registration
file, CARS, a DBE might have answered affirmatively the question about
implicit modification of the file subject by the MANUFACTURER field,
i.e., “Will you want to be able to say ‘Fords’ to mean ‘cars whose CAR-
MANUFACTURER is Ford’?” Doing so would cause a coercion-relation to
be associated with the sort CAR-MANUFACTURER that linked it to the pred-
icate CAR-MANUFACTURER-OF and the sort of the file subject CAR.
This coercion-relation would allow a genitive construction like “Ford’s cars”
to be interpreted as an LFF like

(SOME ¢ (AND (CAR ¢) (CAR-MANUFACTURER-OF ¢ FORD)) ...).

3.4.3 Changing the Sort of a Variable

Some nominals used in English can be forced by their context to take on a
meaning related to but different from the one most immediately apparent; we
refer to this change as coercion from the surface meaning to the semantically
required meaning. Coercion occurs whenever some property of an object is
used to refer indirectly to the object; naturally this happens most with those
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properties that tend to select a single object from among the larger range
of possibilities in the domain of discourse.

For example, consider a database about employees in which one of the
fields for each employee is JOB-TITLE, and one of the job titles is SEC-
RETARY. The word “secretary” is acquired by reading the database, so it
is known to be a job title. The query “Which secretaries earn more than
their bosses?” can be understood by treating “secretary” as meaning not
a job title but an employee whose job title is SECRETARY. This change
requires the coercion of the variable representing this nominal from one sort
(JOB-TITLE) to another (EMPLOYEE); the original sort provides a further
restriction on the variable.

Rather than record the meaning of such words as ambiguous among this
potentially large set of related meanings, TEAM includes specific mechanisms
to support the transformation. These include questions in the acquisition
phase to identify legitimate coercions, rules about names and unique key
fields, information about syntactic clues that indicate the need for coercion,
pragmatic tests to verify that it is indeed required, and a process capable of
effecting the coercion on demand. These mechanisms serve the same role,
albeit in a less general but more easily customizable way, as the network of
known concepts in Ginsparg’s NLP [8].

3.4.4 Acquisition of Modification and Coercion Relations

As was mentioned in Section 1.3.1, TEAM’s acquisition asks the database
expert whether the values in a symbolic field can be used to modify the file
subject either explicitly (e.g., “European countries” to mean countries on
the European continent in the sample database) or implicitly (e.g., “Fords”
to refer to cars manufactured by Ford in a database of automobiles and their
makers). TEAM takes this explicit approach rather than simply allowing all
such fields’s values to serve as possible modifiers; doing so enables it to
rule out some alternative interpretations arising from fields whose values
overlap. For example, a file about ships might include fields containing
the registry and the destination of each ship. Without explicit acquisition
information, TEAM would be unable to decide whether the phrase U.S.
ships meant “ships of U.S. registry” or “ships whose destination is the U.S.”
A human could reason that registry is more truly a property of the ship
whereas its destination is a more ephemeral one, but TEAM is incapable
of such sophisticated reasoning; in the absence of the explicitly acquired
information, TEAM would have to treat this phrase as ambiguous.
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Despite the need for explicit information about implicit and explicit
modifier fields, TEAM does use the natural-language convention that al-
lows names and other similar descriptors to be utilized as either kind of
modifier. For example, we can use “John” to mean the person whose name
is John, and we can use “1040 form” to mean the form whose identification
number is 1040. Any symbolic field that serves as a unique key field for a
file is treated by TEAM in the same manner as such names. However, in
cases in which more than one field must be conjoined to form the key, no
such assumptions are made about any of the key fields. In practice, this rule
means that no questions need be answered concerning a symbolic field that
is the unique key of a file.

3.4.5 When Does TEAM Coerce?

TEAM recognizes a variety of circumstances requiring (or allowing) coercion.

Syntactic clues may indicate the need for coercion; the case that TEAM
can recognize is the use of a proper noun with any indefinite determiner.
Using determiners like what, 10, both, some, or even just the bare plural with
a proper noun flags the need to coerce the sort of the noun to something
else that is being modified by the proper noun. For example, “both Fords,”
“what Boeing,” or even “the Joneses” refer to two cars made by Ford, some
aircraft made by Boeing, and some group of people who are all named Jones,
respectively. TEAM applies this coercion in the basic semantic functions at
the time the determiner is combined with the proper noun. The phrase “ten
Fords” will produce the logical-form fragment:

((NUM 10) eI (AND ((CAR ¢1)(CAR-MAKER-OF ¢! FORD))))

Semantic cues may arigse at the time a predication iz constructed one
argument of which is a variable corresponding to a nominal; if the semantics
of the predicate clash with the sort of the variable (i.e., if the variable
is not of an appropriate sort for the given argument position), coercion
may be tried as a means of resolving the conflict. Although “France” is of
sort COUNTRY-NAME and is used that way in a query like “How large is
the country named France?” it must be coerced for semantic reasons in a
queries like “How large is France?” and “What area does France cover?”
Such coercion will be necessary because the restrictions on the argument for
the predicate COVER associated with the verb “to cover” require a country,
not a country name.
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Words that are associated with subsorts of the sort NAME are always
allowed to be coerced into the things named by them. Although it might
seem appealing to assume from the start that a name is linked directly to the
thing named, such a direct association makes it difficult to treat correctly
expressions in which the name itself is important, e.g., those including the
verb “name.” By distinguishing a name from the thing named, TEAM can
handle queries like “Show the country whose name is the name of a peak.”
(Which, for the sample database, would yield the response Kenya). This
treatment also enables “name” to be acquired as a normal verb.1®

Pragmatic clues indicating the need for coercion can arise during
pragmatic-processing when there is a clash between the arguments of the
predicate chosen to replace a vague predicate and the sort of a filler nom-
inal. This is the same kind of coercion as that triggered by the semantic
cues, but for vague rather than domain-specific predicates. However, this
coercion must be revocable, because the particular predicate being tried as
a replacement for the vague predicate may be an incorrect interpretation. In
this case, it must be possible to seek another replacement predicate. More-
over, since the possible replacement predicates are chosen on the basis of the
gorts of the variables corresponding to nominals, coercion may be essential
to find the correct predicate. This too is necessarily a very tentative step,
one done in such a manner as to allow it to be revoked if it fails to yield an
acceptable predication.

3.4.6 When Should Pragmatics be Done?

The choice as to when a particular pragmatic specialist will run is based on
whether quantifier scoping must be done before the specialist can make its
decision. If not, the specialist can be invoked when logical-form fragments
(LFFs)} are still in the tree; as a result, it does not have to be reevaluated
for each possible scope assignment. The design of TEAM allows some of
the specialists to be run during first-stage pragmatics and then, if scop-
ing information is needed to resolve a choice, again during late pragmatics.
Although the current pragmatic processing in TEAM is not able to take ad-
vantage of this design feature, such a capability is clearly needed. Consider,
for example, a database and task in which two interpretations for the term

13 A name field may be the key field for a file, making such identification of 2 name with the
object named even more appealing. However, this too would cause problems, because
multiple-field keys and nonname keys could not be treated uniformly with name field
keys.
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“commander” are possible, namely “captain of a ship” and “chief of the
Navy”. The query “Who is the cormmander of every ship?” has two possible
interpretations corresponding to the logical forms

(24) (ALL s (SHIP s) {WH ¢ (COMMANDER c) (SHIP-CAPTAIN c s)))
(25) (WH ¢ (COMMANDER c) (ALL s (SHIP 8) (NAVY-COMMANDER ¢ 8)))
Note that the vague predicate OF in the LFF (OF commanderl shipl) is
refined into a different predicate in each case. In Sentence 24, “ship” has
wide scope, so the SHIP-CAPTAIN (which pairs a commander with a single
ship) predicate is preferred. On the other hand, NAVY- COMMANDER,
(which pairs a commander with a set of ships) is preferred in Sentence 25,
because commander has wide scope.

3.4.7 Shortcomings of the Pragmatics

Vague-predicate resolution and sort coercion can be influenced strongly by
the context built up during a discourse; TEAM cannot model these changing
rules and so cannot resolve such cases. For example, in the query pair below
(26)  What planes are in trouble?

(27) Where are the TWA planes?

a human reader will have no difficulty in determining that the planes referred
to by the phrase “the TWA planes” in 27 are those TWA planes identified
in the response to 26. However, TEAM would retrieve the locations of all
TWA planes, because it does not have a model of dialogue context.

If the semantic interpretation of a word needs to be coerced, there are
usually clues within the sentence to the effect that its “face value” inter-
pretation is inappropriate; because TEAM uses only the clash of conflicting
sort requirements within the sentence to test the interpretation, it will fail
to perform coercion when the clues originate in the broader context and not
explicitly in the individual query. For example, in the GEO database the
sentence “What is Everest?” would produce a query paraphrased as “What
peak name is Everest?” which would show the peak name “Everest” as the
answer. Since no other predicate (besides the one derived from show) is
applied to Everest, there is no semantic conflict to tell TEAM that Everest
should be coerced from a peak name to the peak with that name. This is
a rarely seen problem because, in a more natural query like “How tall is
Everest?” a conflict of sorts occurs (derived from asking the height of a
peak name) inducing the necessary coercion.
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3.5 Lexical Ambignity in TEAM

TEAM must handle a wide range of ambiguities that result from the union
of its initial vocabulary with the vocabulary of its acquired domain. Because
the total vocabulary is not builtin, general mechanisms are included in the
acquisition, parsing, and semantic code to support various forms of lexical
ambiguity.

3.5.1 Semantic versus Syntactic Lexical Ambiguity

The simplest form of lexical ambiguity arises when a word has two interpre-
tations that are not the same syntactically — namely, when different parses
are needed for the different choices. TEAM represents this case by assigning
(during acquisition) to the lexical form a unique wordalt (for “word alterna-
tive”) for each syntactically unique meaning. As an example from TEAM’s
initial domain-independent vocabulary, the word whe has two wordalts: one
as an interrogative pronoun (“who is he?) and one as a relative pronoun
(“the man who did it”). The morphological analyzer converts the input
string into a chart in which the alternatives for a given word correspond to
different arcs joining the same pair of nodes. This representation is general
and could be used for all the forms of lexical ambiguity, but it can cause
the generation of a potentially explosive number of parses; the number of
superfluous parses approaches the product of all the lexical ambiguities in
the sentence.

For ambiguous nouns that share the same syntactic properties, TEAM
produces for the ambiguous word only a single terminal node (thus spawning
no additional parses) in which an explicit set of semantic alternatives is
spelled out. For example, in the geography database example, the word
“Kenya” is triply ambiguous: it can be used to refer to a country learned
from the peaks file, a country name from the countries file, and a peak
name from the peaks file. The basic semantic functions use the first listed
alternative as the semantics until something fails to work smoothly, then
reach back to the node for additional possibilities until one that is compatible
with the interpretation up to that point is found. Whenever a change is made
in the semantic choice, previously established constraints are checked and
any semantic alternative that is incompatible with them is rejected.

This approach reduces the parsing load to a minimum. However, it ap-
plies a strict level of acceptability rather than assessing the relative merits of
every possible interpretation; if it finds an acceptable semantic alternative
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for each word, it does not try additional possibilities to see if any are better.
Other approaches involving more sophisticated control schemes could seek
a minimal cost interpretation for which cost depended on a wider range of
factors, including such things as number of coercions required, kinds of co-
ercions required, and rating of the parse. Because of the complexity of such
approaches, they remain problems for future research in natural-language
processing.

3.5.2 Semantic Alternatives versus Multiple Delineations

For ambiguous verbs and adjectives, an additional alternative exists; there
are predicate-producing words that are logically related to one another but
must produce slightly different predicates in the database domain. As an
example, consider a2 domain in which both aircraft and ships have a length
property, but the property is represented differently for the two kinds of ob-
jects. The sentence “How long are the ships and planes in the Blue Army?”
supplies the generic LENGTH-OF predicate, but, because it applies to a
set composed of both kinds of objects, it cannot be differentiated into ei-
ther SHIP-LENGTH-OF or PLANE-LENGTH-OF at the time of sernantic
translation.

TEAM handles such cases by constructing multiple-delineation predicates
whose specifications allow different corresponding sorts for their fields. In
our fleet example, the generic LENGTH-OF predicate would have two de-
lineations, one calling for an airplane and an airplane length, and the other
calling for a ship and a ship length as the role fillers. In the original design of
TEAM, the database access generator determined whether to use one or the
other specific predicate, or to use both for cases like the example of ships
and planes. Unfortunately, the SODA query language does not currently
support the disjunctive case. Since the language component produces such
predicates, the database query generator is forced to use the sorts of the
variables either to choose one of the possible interpretations or to produce
multiple SODA queries, each addressing part of the problem.

Multiple-delineation predicates are created by acquisition at the point
at which a verb or adjective is discovered to have a second, closely related
meaning. The original, unambiguous interpretation is also replaced with
the new multiple-delineation interpretation; it does not get treated specially
just because it was encountered first.
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3.5.3 Pronouns and Coreference Resolution

TEAM uses the mechanisms developed for semantically ambiguous nominals
to handle a limited range of cases of coreference. A promoun is treated
as a proper noun that has a set of semantic alternatives; members of the
set are derived from the semantics associated with the various nodes that
are syntactically acceptable as referents. The determination of a node’s
syntactic acceptability is done by Hobbs’s algorithm [13]. Although this
algorithm can be applied not only to the current sentence, but to previous
ones as well, because of other limitations, TEAM does not currently support
coreference outside the current sentence. Membership in the set is further
constrained by requiring number and gender compatibility, and by applying
rules about reflexive usage (the difference between “he cut himself shaving”
and “he cut him shaving”). To support applying these constraints, gender
markings for acquired vocabulary are explicitly learned during acquisition.

A general solution to the problems of coreference goes far beyond the
scope of the current work. Although its importance in general is well-known,
the role of discourse in determining coreference was not addressed in building
TEAM. However, Grosz [9] contains a sketch of the need to consider discourse
constraints seriously even in the restricted case of using natural language
for database querying

3.5.4 Interaction with Pragmatics

Lexical ambiguity complicates the pragmatics processes significantly. Recall
that these processes handle such tasks as replacing vague predications like
(OF EVEREST1 HEIGHT1) with appropriately chosen specific ones like
(PEAK-HEIGHT-OF EVEREST!1 HEIGHTI). In this example, there are
no relations that tie the initial interpretation of EVEREST! (a peak name)
to HEIGHTI (a peak height). Coercion is applied to make EVERESTI be-
come the variable representing “a peak whose name is Everest” rather than
“the peak name Everest.” The situation becomes even messier if a lexical
item is semantically ambiguous; not only coercion, but alternative semantics
and coercions of the alternatives, will be attempted to determine whether
any relation might replace OF in the predication. TEAM’s pragmatic pro-
cessing tries all these possibilities before rejecting a parse. This is a case in
which overly liberal acquisition combined with TEAM’s limited capabilities
in pragmatic processing can result in constructing a bizarre interpretation
based on a parse that should have been rejected.
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3.6 The Schema Translator

The schema translator maps a logical form that is independent of the
database structure into a database query. To do so, it must solve the fol-
lowing major problems:

Map logical form quantifiers to database query operators,

Determine how logical form predicates and arguments map to database
relations, fields, and values,

» Determine what information to include in a reply to a query,

Remove redundant constraints from the logical form to produce more
efficient queries.

The schema translator also deals with minor changes of representation
and with peculiarities of the database query language.

As discussed before, the information described by a given English word
or phrase can be represented in different ways in different databases. For
example, the verb “to manage” (as in “Who manages Smith?”) could be
represented in one database by the value of a ranager field of an employee
relation, in another by the virtual relation that is defined by

z manages an employee y if

y is in department z and z is the manager of =z (28)

The decoupling of logical form and database structure is essential for the
modularity and transportability of TEAM. Nevertheless, a straightforward
translation of logical form to database query will produce a highly redundant
query. This redundancy stems from the fact that different predicates in the
logical form for a given query may well correspond to accesses to one and
the same database relation.

The schema translator can be seen as a rewrite system that takes the
initial logical form and rewrites it into a simpler form that will produce the
same answers as the initial logical form when evaluated against the database.
This rewriting involves two kinds of processes:

Ezpansion: a construct {connective, predicate) is replaced by its definition.

Simplification: a subformula implied by the rest of the logical form is
eliminated.
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The schema translator operates by means of successive transformations
of the logical form supplied by DIALOGIC. It is simplest to look at these
transformations as operations upon logic formulas that preserve logical
equivalence (or at least equivalence under the closed-world assumption [24]).
In this section, we will use predicate notation for the database relations, al-
though, both in acquisition and in the final relational queries, the actual
notions used are those of relations and fields. For example, an occurrence
of the virtual relation PKCONT will be written as (PKCONT n ¢). “Don’t
care” argument positions will be denoted by a question mark.

The intermediate forms of a query are represented in the schema trans-
lator by implications of the following form:

(ANSWER 21 -+ zyn) «— C (29)
where the condition C is a conjunction of formulas
PIA...AP, (30)

and each F; is either an atomic lteral (P =z;, --- ;) or the application
of some operator to a condition of the same form. The possible operators
are the negation NOT and aggregation operators like MAXIMUM, MINIMUM
and COUNT. A query in the general form shown in (29) specifies the answer
as the set of tuples z,,...,z, that satisfy the condition C.

The observant reader will notice that the general form in (29) is just
that of a certain kind of Prolog clause [5] in which goals may involve the
metalevel operators for aggregation and for negation as failure. In fact,
if the database were itself in Prolog, the user query could be answered by
executing the goal (ANSWER z; -+ z,,) with respect to the Prolog program
comprising the database, the schema predicate definitions (discussed below)
and the definitions of the metalevel operators. The guery processing in
the schema translator may thus be seen as a form of symbolic evaluation
and optimization of the original query with respect to the schema predicate
definitions.

3.6.1 Quantifiers and Database Operators

The component of the schema translator that transforms the incoming
logical-form into an implication of the form shown in (29) transforms certain
logical form quantifiers into their equivalents (e.g., it changes universals into
double negations), selects the predicates that extract values being compared
in comparative and superlative constructions, and converts superlatives into
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appropriate forms of the generic-aggregation operator AGGR. Redundant
equalities are removed. Finally, the EACH and WH logical-form quantifiers
are processed to insure that the corresponding bound variables appear in
the answer tuple. This is clearly required for the WH quantifier that binds
the object of the query, but, as will be discussed in Section 3.6.3, it is also
necessary for the wide scope EACH quantifier.

The generic aggregation operator AGGR has the form

(AGGR opvz Cr),

which applies an aggregation operator op over the set of z,v pairs that
satisfy condition C, producing result r. For example, “the largest country”
will translate into the aggregation

(AGGR MAX ac¢ (COUNTRY c) A (AREA-OF ca)r), (31)

given the appropriate logical form and schema. Aggregation (31) holds when
r is the country ¢ whose area a is the largest among the areas of countries.

It should be noted that superlatives like “the largest country” (discussed
in more detail in the next subsection) are represented in logical form not by
aggr conditions, but rather by special quantifiers, for example:

((SUPER (MORE LARGE)) ¢ (COUNTRY ¢)--),

where (SUPER (MORE LARGE)) represents “the largest.”

3.6.2 Information Sources and Their Use

The schema translator uses two main kinds of information: predicate defini-
tions and constraints. Predicate definitions specify how predicates appearing
in logical form are to be mapped onto database relations. The constraints
give the domain information that will be used in simplifying the logical form
or choosing among alternative definitions. Stated informally, predicate def-
initions provide active information that tells the system how to query the
database, whereas constraints provide passive information that determines
the form of a correct and efficient query (cf. integrity and redundancy con-
straints in relational databases).

Both predicate definitions and constraints are expressed in the schema
translator by logic formulas that correspond directly to well known logical
representations of database views and integrity constraints [6].

A predicate definition has the form
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P—Si]A...ASt AR A...ARp, (32)

in which the S; are sort predications and the R; are the predicates associated
with real database relations. For example, the definition associated with the
virtual relation PKCONT might be

{PKCONT pk cont) +
(PEAK pk) A (CONTINENT cont) A
(PEAK pk height country vol} A
(WORLDC country area pop cap cont)

Of the constraints used by the schema translator to simplify queries,
the most important types express relationships among sorts and sortal con-
straints on arguments of logical-form predicates and on constants. Such
constraints are represented here by implications of the forms

(Sz) « (8 2) (33)
(Sz) « (P z-e2) (34)
(S ¢) (35)

Constraints of type (33) state that S’ is a subsort of §. Constraints of type
(34) state that the named argument of P is necessarily of sort S. Constraints
of type (35) give the sorts of constants c appearing in queries — measures, for
example. In practice, some of this information is not represented explicitly
by logical formulas, but is rather extracted as needed from the sort hierarchy
and other acquisition data structures.

Common nouns are normally translated into sorts; therefore, most vari-
ables in a logical form are restricted by a nontrivial sort. However, nonsort
predicates in the logical form are also sources of implicit sort information,
as any nonsort predicate has delineations that give the possible sort com-
binations for its arguments. For the purposes of the schema translator,
delineation information is represented by implications of type (34}, which
are used in the schema translator to remove redundant noun-phrase predi-
cations.

Although proper nouns and other constants are not explicitly given sorts
in English (in contrast with the entities introduced by common nouns},
DIALOGIC needs to give them sorts so that it can choose among competing
interpretations of other words in queries. Those sorts applied to constants
appear in the logical form, but most can be removed by using constraints of
type (35) (see below for a special case). Actually, facts of type (35) are not
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represented explicitly but rather are calculated as needed from information
in the conceptual schema.

The sorts S; in predicate definition (32), which are actually implied by
the R;, are used to select the right definition for a predicate with multi-
ple definitions for arguments of different sorts (multiple delineations). This
selection played a role in the interpretation of the predicate NORTHERN
in Example (2) of Section 2. The appropriate definition for expanding a
particular predication is selected by comparing the sorts of the arguments
in the predication with the sorts of the predicate arguments given in each
of its definitions. A definition is not suitable for expanding a predicate oc-
currence if any one of the sorts in the predicate occurrence is disjoint from
the corresponding sort in the definition. Thus, the schema translator uses
the disjointness information encoded in the sort hierarchy.

The final query simplification step uses funrctioral constraints derived
from acquired information. A functional constraint states that some field(s)
of a relation is a function of other fields. In predicate terms, we have, for
example, the constraint

c=c <« (PKCONT nc)A{PKCONTn'c')An=n' (36)

In other words, peak continent is a function of peak name.
Functional constraints like {36) allow the schema translator to transform
a query of the form

(ANSWER --+) « -+ (PKCONT n ¢;) A ... A (PKCONT n ¢cz) -+ -
into the simpler query
(ANSWER ...) « -+ (PKCONTnc¢1)Acy =cg-°+,

thereby eliminating one access to the PKCONT relation. We call this trans-
formation merging.

It is clear from the above how functional constraints can be used to merge
conjoined literals. However, it is possible to go further and, in certain special
cases, merge pairs of literals in which one of the literals appears outside and
the other one inside conjunctive aggregations; the special cases are those
aggregations like MAX and MIN {and unlike COUNT), whose aggregation
condition is true of the aggregation’s result (e.g., the largest country is a
country).

In practice, the schema translator does not use functional constraints in
their full generality. Instead, it uses only the information on the key fields of
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relations obtained during acquisition; if a set of fields is the key of a relation,
then (by definition} all other fields are functions of them.

Besides definitions and constraints, the schema translator requires some
extra information before it can translate comparative and superlative con-
structions. The central element of the logical form of comparatives and
superlatives is an eztremal form

Alc) (37)

in which A is an operator such as MORE or LESS and « is the translation
of the uninflected adjective in the comparative or superlative (e.g., HIGH
for “higher than”). Any adjective that can appear in an extremal form
is linked (by the acquisition process} with a binary predicate that asso-
ciates with the subject of a relation one of its numeric fields. In the sample
database, the adjective high with translation HIGH is linked to the predicate
PEAK-HEIGHT-OF. Acquisition also determines whether the adjective is
positive like “high” or negative like “low.” This metalevel information is
recorded by two types of assertions:

(DEGREEPRED « P) 38
(DIRECTION « 6) (38)
In translating the comparative or superlative, degreepred is used to build a
literal that extracts the numeric attribute used for comparison, maximiza-
tion, or minimization; the direction indicator é from direction is combined
with the operator A from the extremal form (37) to determine the direction
of comparison of numeric values (i.e., greater or less than).

3.6.3 Informative Answers

In a query such as “What is the area of each country?” a strict interpretation
of the logical form would lead to the simplified query

(ANSWER a) — (COUNTRY ?a ? 7 7) (39)

resulting in a database query that lists just the areas of countries, without
showing which country covers which area. A more appropriate answer would
be a table of country-area pairs, as provided by the query

(ANSWER ¢ a) + (COUNTRY ca ? ? 7) (40)

60



We say in this case that the country name argument ¢ is related to the strict
answer argument a. More generally, the related arguments of an answer are
those on whose values the answer depends.

It would be possible to determine exactly the related arguments of an
answer by examining the functional properties of the database relations
(encoded in the specification of key fields). However, this would in many
cases result in an overly verbose answer, because not all argument positions
are mentioned explicitly in the natural-language query.

We opted instead for the simpler heuristic of taking as related arguments
those variables explicitly quantified in the logical form whose quantifiers
outscope the quantifier for the answer argument. Of course, variables that
appear outside a negation are never related to arguments inside it,

3.6.4 Operation

We will now describe the main steps of the schema translator, which operates
in almost sequential fashion. The effect of each step will be exemplified by
showing the resulting intermediate and final query representations of query
(2) from Section 2, “What northern countries contain peaks higher than
Fuji?” Recall that this query is translated by earlier steps of TEAM into the
logical form of Figure 18.

First, the logical form of the query is put into clause form and the vari-
ables related to the answer are identified, resulting in the implication in
Figure 19. The answer variable ¢ of sort COUNTRY is preceded in the an-
swer literal by the related variables. Besides the variable p that corresponds
to the noun phrase “peaks,” we have f for the quantification associated
with the constant FUJI (an artifact of the logical form that will be removed
later), s for the height of Fuji, and A for the height of the peak p. The
variables s and % do not come from explicit quantifications in the English
query, but it is often convenient to show these implicit comparison vari-
ables to justify to the user the selection made by the comparison. Note also
the transformation of the term ({(MORE12 HIGH) p &) into the conjunction
((PEAK-HEIGHT-OF p k) A (> h 8)). The extremal operator MORE12
indicates a comparison in the increasing direction between the value of the
attribute of p (indicated by the predicate HIGH and accessed by predicate
PEAK-HEIGHT-OF) and a height value s.

In the next step all nonsort literals are expanded as specified in their
predicate definitions. The expanded predicates are PEAK-NAME-OF,
PEAK-HEIGHT-OF, NORTHERN, and CONTAIN. As the relation
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(QUERY
(WH ¢
(AND (COUNTRY c)
(NORTHERN ¢))
(SOME f
(AND (PEAK f)
(PEAK-NAME-OF fFUJI))
(SOME h
(PEAK-HEIGHT k)
(SOME p
(PEAK p)
(AND (PEAK-HEIGHT-OF f &)
((MORE12 (HIGH)) p k)
(CONTAIN ¢ p)))))))

Figure 18: Logical Form

(ANSWER fsp hc) «
(COUNTRY ¢) A (NORTHERN ¢) A
(PEAK f) A (PEAK-NAME-OF fFUII) A
(PEAK-HEIGHT 8) A
(PEAK p) A
(PEAK-HEIGHT-OF fs) A
(PEAK-HEIGHT-OF p k) A
(> k) A
(CONTAIN ¢ p)

Figure 19: Query in Clause Form

PEAK has a single key field, peak and peak name can be identified
by replacing variable f with the constant PUJI and replacing the literal
(PEAK-NAME-OF f Full) with (PEAK FUJI ? 7 ?). More interestingly,
the predicate NORTHERN for countries (objects of sort COUNTRY) is
defined by a join between relations WORLDC and CONT; another defini-
tion of NORTHERN, for continents, will be used only for objects of sort
CONTINENT. The resulting query (Figure 20) contains only database rela-
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(ANSWERFUII sp h c) —
(COUNTRY c) A
(CONT n?N ) A
(WORLDC c??7n)A
(PEAKFWI) A
(PEAKFUII??7) A
(PEAK-HEIGHT 8) A
(PEAK p) A
(PEAKFWIIs? 7)) A
(PEAKp A7 ?)A(> hs) A
(PEAK p?¢?)

Figure 20: Expanded Query

tions and sort literals.

This first expansion step is followed by a simplification step in which
sort constraints are used to remove all sort literals implied by other literals.
If there were any sort literals left (which is not the case in this example)
it would be because they contribute constraints to the query. This occurs
in particular with the sorts derived from feature fields. The result for our
example is shown in Figure 21. At this point, another expansion step would
replace the remaining sort literals with their definitions. Since there are
none in our example, the query is unchanged.

At this point, the query contains only actual database relations. How-
ever, because of the decoupling of logical form and database predicates, it
contains many redundant accesses to the database relations. The merging
transformation discussed earlier i3 now invoked to remove those redundant
accesses, resulting in the query of Figure 22. The body of this query is as
simple as it could be, given the initial English query and the structure of
the database.

The final step is to transform the implication form query into a query
in the target database query language, SODA. Answer variables identified
either with constants or with other answer variables are also removed at this
point to eliminate redundant information from the answer vector.

In SODA, as in more familiar relational query languages, such as SQL,
equalities between relation fields play the same role as shared variables in
logic, while tuple variables play the same role as literals. The final trans-
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(ANSWERFUJI sp h ¢) +—
(CONT n?NT7) A
(WORLDC e 77?7 n) A
(PEAKFUII? 7 ?) A
(PEAKFUIT 87 7) A
(PEAK pR?)A(> R A
(PEAK p?¢?)

Figure 21: Simplified Query (no postexpansion needed)

(ANSWERFUIIsp k c) +—
(CONT n 78 7) A
(WORLDC ¢?? 7 n) A
(PEAKFUII877) A
(> ks)A
(PEAK phc?)

Figure 22: Merged Query

formation is essentially a compilation from clause form to SODA that takes
into account those notational differences as well as the scope rules for tuple
variables and aggregations in SODA. The result for our example is shown
in Figure 23.

Of all the steps in the schema translator, only the last depends on the
particular database query language used and would have to be changed for
a database gystem with a different query language. If the database query
language were Prolog, the last step would not be needed at all.
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((IN n CONT)
(n CONT-HEMI EQ K)
(IN ¢ WORLDC)
((c WORLDC-CONTINENT) EQ (n CONT-NAME))
(IN fPEAK)
((f PEAK-NAME) EQ FUJI)
(IN p PEAK)
((p PEAK-HEIGHT) GT (f PEAK-HEIGHT))
((p PEAK-COUNTRY) EQ (¢ WORLDC-NAME))
(? (p PEAK-NAME))
(? (» PEAK-HEIGHT))
(? (¢ WORLDC-NAME))
(? (f PEAK-HEIGHT)))

Figure 23: SODA Query

65



4 Other Approaches to Transportability

Interest in developing natural-language interfaces for a wide range of
databases has spurred a number of attempts to create transportable sys-
tems. TEAM itself grew out of an earlier attempt [16] to make LADDER (11]
more easily adaptable to new domains by providing a system designer with
functions making it relatively easy to create new entries in the lexicon, con-
ceptual schema, and database schema. Figure 24 summarizes the properties
of six systems that have taken approaches to transportability that differ in
a number of ways from TEAM’. The six systems are: ASK [30], EUFID
[29],(28], Ginsparg’s system (8], IRUS [4], CHAT-80 [35] and LDC-1 2], [3].

We will compare these systems with TEAM and with each other from
several standpoints.! Because of the diverse goals of these research efforts,
it is important to restate the obvious: any single set of criteria can serve as
a basis for comparison only with respect to particular issues, and should not
be taken as a means of ranking systems above or below one another globally.
The criteria of comparison we will use are the following:

1. The kinds of transportability that are accommodated: to other lin-
guistic domains, to other specific databases, to other database man-
agement systems.1®

2. The kinds of expertise required for the person doing the transporting:
expertise in the particular system (system designer), natural-language
processing (computational linguist), databases (database ezpert), ex-
perience or training with the particular system (superuser), ordinary
user (end user).

3. Basic system design. How general is the natural-language processing
system? Is it intended for handling natural language generally (general
NLP), the subset of NL that arises in database querying (db-specific
NLP), or the subset of NL specific to a particular database (specific to
db)? We explicitly note if a system uses a semantic grammar because,

14Diacussions with the builders of the other systema were helpful in refining these criteria
as well as in correcting the presentations of each system.

15We did not consider transportability to other types of computer systems, but looked
only at transportability for interfacing to a database. Some systems (e.g., IRUS, the
DIALOGIC component of TEAM) have been developed with this more broad type of
traneportability in mind, but this opens many guestions beyond the scope of this paper
{cf. [23]).
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TEAM Ginaparg IRUS CHAT-80 ASK LDC-1 EVUFID
TYPES OF linguiatic linguistic Ltogoistic lnguistie lingniatle linguistle Hnguittie
TRANSPORT- domaln, domaln, domain, domaln, domain, domaln, domain,
ABILITY db, db, db, db db db db,
DBMS DBMS(rel1) | DBMS DBMS
item hge: arstem
EXPERTISE dalabuae system syitem designer waer, ATptTUT designer
OF expart designer designer anperoder, +
TRANSPORTER system domuin
designer expert
general db-specific semantie stmantic
SYSTEM NLP (+ genera! seneral geoeral NLP (+ grummar-db | grammer
DESIGN acqoisk- NLP NLP NLP aequisition) | NLP (+ specifie
tion) scquisition} to db
lexicad, Texical, lexical, lexical, 1 (lexteal, lexfeal, lexical,
INFORMATION | couceptnai, | memanlie domaln logleat coiceptunl, | eonceptnal, stmantic
ACQUIRED db achema petwork, semattion, form to db | db) eonceplonl graph,
db schema b achetna predicate to 4b dalabase
mapplngs tappings
CONTROL nyatem aystemn Tslem trahsport
oF ystem desigoer duignrr deaigner superumr SUptruser abllity
ACQUISITION staff
general general general geaeal
RANGE [rerbe, lverbs, [rerds, Jrerbs, geoerak restricted grammar-
OF NL quanUBers, [ quantifiers, | qnantifers, qeastifiers, | detsbase dependent
EXPRESSIONS limited limlied Limited no qeery
snaphora| aasphoral anaphora] anaphora]
TIME minutes - hours - wetks duys - t minotes - months
TO ADAPT houra day weeks bourn

Figure 24: Summary of Comparison of Transportable Systems

as discussed previously, this affects transportability. In addition, we
note those systems that include automatic acquisition capabilities of
some sort.

4. The kinds of information that must be supplied to adapt the system
to a new database and domain. This differs with the particular system
design, more details in regard to which are are given below.

5. Control of acquisition. Does the user {of whatever type) or system de-
termine when the minimum necessary information has been supplied?
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6. Range of natural-language expressions handled. For example, how
general a capability for adding new verbs is provided? Are quan-
tifiers handled adequately? What kinds of anaphoric reference are
supported?

7. How long does it take to adapt the system to a new database?

In the following discussion, when considering systemn design, we will also
note whether the particular system (1) separates the representation of the
meaning of the query from the retrieval statement in the database query
language, and (2) separates domain- and database-specific information from
domain- and database-independent information.

With regard to the range of natural-language expressions handled, we
will focus our attention on three important constructions: verbs, because
they are one of the prime components of natural language and, to a great ex-
tent, are what distinguishes fluent natural-language querying from querying
in formal database-query languages; quantifiers, because they are essential
to database query; and anaphoric expressions, because they give some indi-
cation as to whether the system is making any attempt to handle extended
discourse.

We have not included runtime for processing a query as one of the points
of comparison, because the systems run on different types of computer sys-
tems making such comparisons difficult and of dubious value (in fact, doing
this was resisted quite strongly by the other systems’ designers as well).
TEAM typically takes between one and two seconds on a Symbolics 3600
series machine to translate an English query into the corresponding SODA
query; the time to produce an answer depends, of course, on the size of the
database. Further details on TEAM are in the preceding sections of the
present paper. In the remainder of this section we would like to elaborate
on the other systems in sufficient detail to convey their basic premises and
techniques, as well as to emphasize their differentiating characteristics.

Ginsparg’s System:  The core of Ginsparg's system is a general natural-
language-processing system that includes an extensive semantic network re-
lating various concepts to one another. Lexical and network information
are used to derive a formal representation of the meaning of a query; this
representation is also in the form of a semantic network. A Data Base
Application Program maps the network representation into a query in an
augmented relational algebra.
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The system handles a wide-range of natural-language expressions, in-
cluding noun-noun constructions and some other “pragmatic” constructions.
The system also includes extensive capabilities for handling quantifiers and
conjunction. One of its interesting features is a general mechanism to com-
pute coercions on the basis of preferences for case fillers and comparison of
path-lengths in the semantic network.

Ginsparg’s system was designed to be moved to new linguistic domains,
new file structures, and new relational DBMSs. The mapping to a new
DBMS is done by writing a translator program between the relational-
algebra query language and the target DBMS language. The system in-
cludes certain tools that aid in acquiring the information needed for moving
to a new domain or database, but the adaptation presupposes sufficient
knowledge of how the system works that a system designer is required to do
it. In particular, it is assumed that the transporter understands the target
application program and is familiar with the layout of the existing semantic
network.

The core system contains an elaborate semantic network for concepts
related to a range of common English words, so that much of the lan-
guage acquisition is concerned with providing links between the existing
vocabulary and database-specific concepts. This involves supplying implicit
case information about file attributes and creating virtual relations to sup-
port attributes as different synonyms in different contexts. Connection to a
database proceeds by first connecting nodes of the semantic net to the re-
lations in the database schema, then connecting the relations to the actual
database.

The user determines when enough has been acquired (another factor
contributing to the need for a system designer to do the transporting). This
system has been moved to several “toy” and one real database (the Bell
Labs Company Directory). It requires only a few hours to move to a similar
domain, or a day or so for a first attempt at adapting the system to a domain
further removed from its existing network [7].

IRUS: Like TEAM and Ginsparg’s system, IRUS (for Information
Retrieval using the RUS parsing system) is based on a general natural-
language-processing system. It translates an English query into a higher-
order predicate calculus representation of its meaning, which is then mapped
to a language reflecting the database structure, and then to an appropriate
DBMS query. IRUS has been interfaced to System 1022 and to the IDM
5000 database machine; interfaces to two other DBMSs are currently being
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developed.

IRUS includes an extensive grammar of English, including a wide range
of verb types (e.g., IRUS, like TEAM and Ginsparg’s system, can handle
sentential complements). It covers a broad range of natural-language deter-
miners, including some not common in predicate calculus. It deals with a
good portion of the quantifier-scoping problem by restricting the quantifica-
tion possibilities for variables associated with database fields to those that
would make sense for generating database values,

IRUS is modularized for adaptation to different domains, databases, and
DBMSs. Currently the adaptation requires a system designer, although (as
with Ginsparg’s system) IRUS includes several tools for aiding in acquisition;
these tools may well evolve to the point that a superuser will be able to do
the adaptation. Responsibility for deciding when enough information has
been supplied rests with the user (i.e., the system designer at present).

To adapt IRUS to a new domain requires adding lexical information
(the system has closed-category words already), providing the semantics
for domain concepts, and creating file structure tables for the particular
DBMS. Staff weeks are required for moving IRUS to a new database if the
domain is one to which IRUS has previously been adapted and the DBMS
is one that is already supported. More time is required if a new DBMS
is involved or a more radical shift in domain is entailed. However, some
of the vocabulary can be carried over between applications; the connection
between the semantics and the database can be changed without any need
to reacquire the complete lexical entry.

CHAT-80: Chat-80 also includes a general natural-language-processing
system, but differs from the previously described interfaces in its reliance
on Prolog. Chat has a separate syntactic grammar, semantic interpretation,
scoping and query planning components. These components are domain-
independent and use domain information in tables represented by logic
clauses. The grammar has extensive treatment of gapz and movement, some
forms of topicalization, comparatives, superlatives, and aggregation words
(e.g., “average” and “proportion”). The verb phrase grammar is restricted
to noun phrase, prepositional phrase, and predicative complements. Coor-
dination is allowed only between predicative noun or verb complements. Se-
mantic interpretation uses the sorts of predicate arguments to select accept-
able complement attachments. Scoping generates the most closely scoped
reading compatible with scoping rules and heuristics; differences among de-
terminers such as “each”, ‘any”, and “every” are handled reasonably. The
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result of the scoping component is a logical form that is further simplified
and optimized for Prolog execution by query planning.

Chat can be transported to new linguistic domains and, to the extent
that they can be mapped onto Prolog concepts, to new file structures. Adap-
tation requires supplying Prolog clauses that give dictionary entries and
specify mappings between logical-form predicates and database predicates.
All the current applications of Chat use the internal Prolog database; adap-
tation to any other database system would require an interface between
it and Prolog. The current version of Chat has been transported by the
original designers as well as by competent Prolog users with some under-
standing of the system’s design concepts. It is the user who decides whether
an acquisition is complete.

The time to transport Chat has ranged from a few days to a few weeks,
depending on the complexity of the new application; the longest adaptation
times include substantial new Prolog code to provide new functionality, such
as graphical presentation of answers.

The ASK system: ASK handles a broad range of linguistic forms within
the task of database querying. It also can treat a limited range of intersen-
tential anaphora. Because little information is available on the internal
structures and processes of ASK, it is difficult to determine exactly what
the system design is, or what information must be supplied to adapt ASK to
a new domain or database. ASK is based on a previous system, REL([32]),
which used a case grammar as the basis for parsing.

ASK, like REL, in transforming an English question into a database
query, does not use an intermediate representation of the query’s meaning.
This design decision was made for efficiency reasons, but one of its effects
is to make it necessary for a superuser or system designer to make certain
kinds of adaptations. This decision also makes it difficult to assess the
general capabilities of the natural-language processing system; because the
meaning of a query is taken to be identical to the code for retrieving an
answer, the system’s coverage of natural language is restricted to database
querying.

ASK uses an entity /attribute database model; to adapt it to a new do-
main the user has to specify explicitly the individuals, classes, attributes
(single-valued) and relations for the domain. Some of these may be ex-
plicit in the database structure, but others may not be. Adapting to a
new database can be done in two ways: using the ASK internal database
structure, or hooking directly to a “foreign” database. The first is done
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by providing a text file with all the database information and using one of
ASK’s acquisition dialogues, the “bulk data input dialogue”, to provide in-
formation about the contents of the database so that ASK can appropriately
configure its internal database. This dialogue seems to assume a combina-
tion of knowledge about natural-language processing concepts and database
concepts (including details of the text file format). The second method for
connecting to a2 new database, directly connecting to that database, involves
providing ASK with details of how information is stored in the database.
ASK includes an acquisition dialogue, the “foreign access dialogue,” that
aids in providing this information. However, to provide this kind of access,
one needs to know the details of the implementation of the foreign database.

There are special stylized English-like inputs for adding new definitions
(e.g., to specify that child-of is, roughly, the inverse of parent-of) as well
as new individuals, classes, attributes, and relations. The addition of verbs
(the core system includes “be” and “have”) also is done by using one of these
stylized patterns ([31]). Typical verb definitions depend on prior definition
of all the appropriate individuals, classes, relations and attributes. ASK
acquires new verbs as specialized instances of a general verb form. It can
handle passives, datives, and prepositional arguments, but does not provide
for verbs with features such as unaccusative as opposed to object-omitted
constructions,'® prohibited passives,!’ and sentential complements.

ASK also includes some capabilities for natural-language access to addi-
tional kinds of software; text messages and graphics are two examples often
cited. Adapting ASK to such systems requires a system designer however,
and is beyond the scope of concepts dealt with in this paper.

In summary, end users can easily add new word definitions and new data
(using the stylized input format for addition definitions), but adapting to a
new domain and database seems to require at least a superuser or someone
with combined database and natural-language-processing expertise. No data
are available on how much time is required to transport ASK.

16For example, it cannot distinguish verbs like “grow” which does not allow for object-
omission (i.e., A farmer grows® cannot be used to mean a farmer grows something,
although “Wheat grows” can be used to mean that wheat is grown by someone) from
those like “cook” which do (i.e., *A farmer cooks” can be nsed to mean a farmer cooks
something, and “A turkey cooks” to mean a turkey is cooked).

17Certain senses of some verbs cannot be passivized; e.g., *The turkey weighe twelve
pounds® cannot be passivized to *Twelve pounds are weighed by the turkey.”
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LDC-1: LDC-1is a transportable system that serves to interface with a
database consisting of text files rather than with the more structured form of
database considered in the other systems described here. These files do not
consist of natural-language sentences expressing information, but are rather
just a textual form of database. We are including it because it does offer
reasonable linguistic coverage and some degree of transportability. LDC-1
provides for transportability to new linguistic domains and new databases;
the actual database is internal to LDC and is constructed from raw text
files,

The LDC parser produces a parse that is structured by semantic cases;
the parse is converted directly into a high-level retrieval query. English
modifiers in the original query are transformed into parameterized query
procedures, which are then executed within the framework of the overall
query.

LDC includes a phrase structure grammar that gives fairly broad NL
coverage, including complex noun and verb phrases and limited coverage
of noun-noun constructions and genitives, some discontinuous constituents
(e.g., split “than” complements). LDC does not currently provide a general
treatment of gapping, pronouns, or quantifier scoping.

To transport LDC to a new domain and database, the following be sup-
plied: dictionary and compatibility files, including English words, their ma-
jor categories (verb, noun, adjective), their morphological properties, and
selectional restrictions; entries in a data dictionary, including the names of
each type of entity and the nature of the relations among them; macrodef-
initions files that specify the relations between conceptual entities and the
physical entities present in the raw lexical file, as well as providing a map-
ping from each English modifier to a corresponding retrieval expression. A
preprocessor module provides assistance in supplying this information; it
also supports restructuring of the raw data file for greater utility.

Adapting LDC requires a superuser (i.e., an experienced user who knows
about the various system structures) for everything but entering data into
the text file database. The superuser ascertains the completeness of each
part of the acquisition. For certain portions, there is a preprocessor module
that asks questions to elicit complete information. In addition, whenever
the English processor encounters words whose lexical or semantic properties
are not known, a run-time customization module is invoked.

The form of the text file database can be changed quite fast; complete
customization for a new domain has been reported as typically requiring
from 30 minutes to four hours [1].
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EUFID: EUFID’s natural-language processing is based on a semantic
grammar. A new one is written for each application; syntactic informa-
tion is used only when needed to “resolve semantic ambiguities.” Domain-
independent linguistic information consists solely of the closed-set vocabu-
lary (the “function words”) in the dictionary. Semantic categories in the
grammar, corresponding essentially to to fields in the database, are derived
from information about key fields and their joins.

EUFID processes queries in three steps. First, an analyzer produces a
“parse” tree {the nodes of which include semantic categories). Next, a trans-
lator produces an intermediate-language {IL) representation of the meaning
of the query; the IL is oriented to database structures. Finally, the IL repre-
sentation is translated into the actual DBMS query language. The translator
program is written anew for each new DBMS language. {This has been done
for both QUEL and WWDMS).

EUFID uses a dictionary that includes both function words that are
common across applications, and content words that pertain specifically to
an application. The content words are linked into a large “semantic graph”
in which the nodes’ case-atructure roles form the connecting links. Also
associated with each content word are one or more mapping functions that
specify how the nodes of a parse tree are to be transformed into IL; these
mapping functions govern the translation from parse tree to IL.

The information for mapping from the concepts in the semantic graph to
the IL consists of two tables, both of which must be supplied for each new
domain and database: one, has the database-specific information for each
field of each relation {e.g., field name, formats, conversion functions) while
the other lists each database “group” (similar to, but not identical with, a
sort), each group-to-field mapping, and the logical joins needed to form each
possible group-to-group connection.

The range of natural language that can be handled varies because a
different grammar is constructed for each new domain/database. Some kinds
of conjunction and simple negation are handled; quantifiers are not treated
generally.

EUFID was designed to be transportable to new linguistic domains, new
file structures, and new DBMSs. It has been adapted to three domains
and two DBMSs. Adaptation requires both a EUFID expert and a domain
expert. These experts decide when sufficient information has been given
to EUFID. To facilitate their decision, a test set of about 300 sentences is
devised before the transport attempt and, as it proceeds, used as a gauge of
progress.
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Accounts of experiences with EUFID [29] report that in adaptations to
three new domains, each successive effort was faster than its predecessors,
but that a typical transport still takes “several staff-months”.
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5 Conclusions

Previous sections of the paper have discussed the basic mechanisms used
in TEAM to provide transportability in a natural-language interface system
and have examined several specific research problems that had to be dealt
with as TEAM was being developed.

Although the TEAM systemn has not undergone the kind of testing an
actual product is normally subjected to, it has been used by a fair number
of people in various organizations. Sufficient experience has been gained to
suggest that the TEAM experiment has had essentially positive results. It
does appear possible to build a natural-language interface that is general
enough to allow adaptation of the system to a new database by a user
(DBE) who is familiar with the database itself, but not an expert in natural-
language processing and does not know the details of the system itself.

However, this accomplishment must be placed in the proper perspective.
TEAM cannot exceed the limitations of natural-language-processing technol-
ogy. It shares such constraints of customized interfaces as being restricted
to single queries and being able only to retrieve the facts from a database,
not to reason about them.

TEAM handles a wide range of verbs, a capability that is absolutely es-
sential for fluent natural-language communication. Itslimitations in treating
determiners of all sorts are evident in those cases where discourse and prag-
matic constraints are central to obtaining the correct interpretation. The
system handles limited uses of pronouns, but here too the lack of discourse
knowledge is a critical limiting factor.

Work on TEAM might be extended in a number of ways — some prac-
tical, others research-oriented. To comstruct a useful application system,
the techniques developed for TEAM must be integrated with other features
that are important to natural-language communication (e.g., techniques for
generating cooperative responses [14]) and to human-computer interactions
generally (e.g., error correction). In addition, since a grammatical formalism
for encoding syntactic information in TEAM was decided upon, several more
perpsicuous ones have been developed and analyzed (e.g., [27]); however,
grammars with coverage as extensive as TEAM’s have yet to be developed
in such formalisms. We are now investigating ways of providing transporta-
bility in natural-language systems that enable communication with other
kinds of software and that include more discourse capabilities than TEAM
and other transportable systems currently possess.
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A TEAM Questions and Information Extracted

This appendix lists all of the questions that are asked of the database expert
by the TEAM acquisition component, and indicates what information is
extracted from each one. Answers to questions potentially affect the lexicon,
the conceptual schema, and the database schema, as well as determining
what additional questions are presented to the DBE.

A.1 Relation Objects

File Name -

Gets name of relation. Used by both conceptual and database schemata.
Relation’s status in database - VIRTUAL ACTUAL

Determines what questions need to be asked.
Database pathname -

Gets internal file name of database for use by Lisp Machine file system
What is this relation about? ENTITIES RELATIONSHIPS

Determires what additional questions need to be asked.

Conceptual schema: Determines whether OF-PREDICATES will be

created for fields.
Subject - (asked only for ENTITIES relations)
Lexicon: Adds noun for subject.
Conceptual Schema: adds subject sort.
Fields -

Lexicon: Adds noun for each field name.

Conceptual Schema: Adds sort predicate for each field sort.

Adds OF-predicate for each field if ENTITIES relation.
Primary Key Set -

Database Schema: Provides information needed to specify attachment of
OF-predicates, field sort predicates and subject sort to
the database.

Identifying Fields -

Database Schema: Provides information needed to answer queries properly.
Pronocuns for file subject - HE SHE IT THEY

Lexicon: Provides plural and gender information for subject noun.

A.2 Field Objects
Type of field - SYMBOLIC ARITHMETIC FEATURE
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Determines what questions need to be asked.
Symbolic Fields:
Edit lexicon for words in this field - YES NO
If yes, when database is read, team will have access to all entries so the
DBE can specify irregular plurals, synonyms, etc.
Are field values units of measure -
If answered yes, it wants to know what arithmetic field this field units for.
Database nouns subcategory - PROPER COUNT ABSTRACT MASS UNIT
Lexicon: Information required to create lexical entries for words in
database.
Conceptual Schema: Information required to associate the proper
semantic predicate with the words in database.
Typical value -
Used to phrase help information for the following two questions.
Will the values in this field be used as classifiers of the file subject? YES NO
Conceptual Schema: Pragmatic information required to support
“How many Ford cars...?” type of questions.
Will the values in this field be used alone as implicit classifiers? YES NO
Conceptual Schema: Pragmatic information required to support coercion.
Used in “How many Fords ...?7" type of questions.
Arithmetic Fields:
Value type - DATES MEASURES COUNTS
Determines what questions need to be asked.
Date format - MM/DD/YY DD/MM/YY YY/MM/DD MONTH DAY JULIAN
Database Schema: Determines conversion factor to canonical time
representation for date fields.
Are the units implicit - YES NO
Companion question to “Are field values units of measure?” question.
Enter implicit unit -
Lexicon: Adds noun for unit of measure.
Conceptual Schema: Adds predicate for measure unit.
Measure type of this unit -
Conceptual Schema: Determines where to place field sort predicate
in the sort hierarchy.
Abbreviation for this unit -
Lexicon: Enters noun for abbreviation.
Conversion formula for <canonical> to <new-unit> -
Database Schema: Provides conversion factor for printing the answer
to query.
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Conversion formula for <new-unit> to <canonical> -
‘ Database Schema: Provides conversion factor for constructing query.
Type of object counted - (asked for COUNT fields)
Lexicon: Enters noun for type of object.
Conceptual schema: Enters sort predicate for type of object.
Positive adjectives -
Lexicon: Enters adjectives
Conceptual Schema: Enters adjective predicate, related field, and
direction for scale information.
Negative adjectives -
Lexicon: Enters adjectives
Conceptual Schema: Enters adjective predicate, related field, and
direction on scale information.
Feature fields:
Positive value -
Lexicon: Enters noun for value.
Conceptual Schema: Enters semantic predicate for value.
Creates subsort of field subject sort.
Database Schema: Specifies database attachment of subsort.
Negative value -
Lexicon: Enters noun for value.
Conceptual Schema: Enters semantic predicate for value.
Creates subsort of field subject sort.
Database Schema: Specifies database attachment of subsort.
Positive adjectivals -
Lexicon: Makes adjective entry.
Conceptual Schema: Enters predicate for adjective.
Database Schema: Specifies attachment of adjective predicate to database.
Negative adjectivals -
Lexicon: Makes adjective entry.
Conceptual Schema: Enters predicate for adjective.
Database Schema: Specifies attachment of adjective predicate to database.
Positive abstract nouns -
Lexicon: Makes noun entry.
Conceptual Schema: Creates sort for noun, places in sort hierarchy.
Database Schemna: Attaches sort predicate to the database.
Negative abstract nouns -
Lexicon: Makes noun entry.
Conceptual Schema: Creates sort for noun, places in sort hierarchy.

80



Database Schema: Attaches sort predicate to the database.
Positive count nouns -

Lexicon: Makes noun entry with appropriate sernantics,
Negative count nouns -

Lexicon: Makes noun entry with appropriate semantics.

A.3 Word Objects

Enter word -
Gets the name of the word.
Synonym -
Specifies synonym for newly added word.
Lexicon: Copies all syntactic and semantic properties from synonym.
Syntactic category - NOUN ADJECTIVE VERB
Lexicon: Determines major syntactic category.
Noun Subcategory - PROPER COMMON ABSTRACT MASS
Lexicon: Detfermines subcategory information for nouns.
Plural -
Lexicon: Makes enfry for irregular plurals.
Comparative -
Lexicon: Makes entry for irregular comparative form of adjective.
Superlative -
Lexicon: Makes entry for irregular superlative form of adjective.
Third person singular present tense -
Lexicon: Makes entry for irregular third person singular of verbs.
Past tense -
Lexicon: Makes entry for irregular ED form.
Past participle -
Lexicon: Makes entry for irregular EN form.
Sentence -
Determines what questions get asked next.
Conceptual Schema: Creates verb predicate and determines the number
of arguments and the sort of each one.
A subj Va P obj <= A subj Vs it P
Lexicon: Is preposition a case marker or a particle?
For transitive verbs: A subj Vs an obj + PPs.
An obj Vs <= Something Vs an obj
Lexicon: Can object appear as subject when deep subj omitted?
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A subj Vs <= A subj Vs something
Lexicon: Is the object optional?
An obj i8 Ven <> Something Vs an obj
Lexicon: Can sentence containing verb be passivized?
For transitive verbs: A subj Vs an objl obj2 + PPs
A subj Vs an objl obj2 <=> A subj Vs an obj2 {to | for} an objl
Lexicon: Determines preposition for dative.
A subj Vs an obj2 <= A subj Vs someone an obj2
Lexicon: Determines if object is optional.
A subj Vs <= A subj Vs someone something
Lexicon: Determines if both beneficiary and object are optional.
An obj2 is Ven <= Something Vs someone an obj2
Lexicon: Determines if verb can be passivized.

82



Bibliography

References

[1]
2]

(3]

[4]

[5]

[6]

(71
(8]

[°]

[10]

[11]

Ballard, B., Personal communication {(1985).

Ballard, B., The syntax and semantics of user-defined modifiers in a
transportable natural-language processor, in: Proceedings of COLING
(1984) 52-56.

Ballard, B. and Tinkham, N., A grammatical framework for trans-
portable natural-language processing, Computational Linguistics 10 (2)
(1984) 81-986.

Bates, M. and Bobrow, R., A transportable natural language interface,
in: Proceedings of the 6th Annuel International ACM SIGIR Conference
on Research and Development in Information Retrieval (1983).

Clocksin, W. F. and Mellish, C. 8., Programming in Prolog (Springer-
Verlag, Berlin, 1981).

Gallaire, H., Minker, J., and Nicolas, J., Logic and databases: a deduc-
tive approach, ACM Computing Surveys 16 (2) (1984) 153-185.

Ginsparg, J., Personal communication, phone call circa Feb. 28 (1985).

Ginsparg, J., A robust portable natural language data base interface,
in: Conference on Applied Natural Language Processing (1983) 25-30.

Grosz, B. J., Transportable natural-language interfaces: problems and
techniques, in: Proc. of the 20th Annual Meeting of the ACL (1982)
46-50.

Grosz, B. J., Haas, N., Hendrix, G. G., Hobbs, J., Martin, P., Moore,
R., Robinson, J., and Rosenschein, S., Dialogic: a core natural-language
processing system, in: Proceedings of the Ninth International Confer-
ence on Computational Linguistics (1982).

Hendrix, G. G., Human engineering for applied natural language pro-
cessing, in: Proc. of the Fifth International Joint Conference on Arti-
ficial Intelligence (1977) 183-191.

83



[12) Hendrix, G. G., Semantic aspects of translation, in: Walker, D. E.
(Ed.), Understanding Spoken Language (Elsevier, New York, New York,
1978).

[13] Hobbs, J. R., Pronoun Resolution, Research Report 76-1, Department
of Computer Sciences, City College, City University of New York, New
York, New York (1976).

[14] Kaplan, S. J., Cooperative responses from a portable natural language
database query system, in: Brady, M. and Berwick, R. (Eds.), Compu-
tational Models of Discourse (MIT Press, Cambridge, MA, 1983).

)
[15] Knuth, D. E., Fundamental Algorithms, Volume 1 of The Art of Com-
puter Programming (Addison-Wesley, Reading, Massachusetts, 1973).

[16] Kopolige, K., A Framework for a Portable Natural Language Interface
to Large Data Basea, Technical Note 197, Artificial Intelligence Center,
SRI International, Menlo Park, California (1979).

[17] Levin, B. C., English verb complementation patterns. Unpublished
manuscript (1979).

(18] Martin, P., Appelt, D., and Pereira, F., Transportability and generality
in a natural-language interface system, in: Bundy, A. (Ed.), Proc. of the
Eight International Joint Conference on Artificial Intelligence (1983)
573-581.

[19] Moore, R. C., Handling Complez Queries in a Distributed Database,
Technical Note 170, Artificial Intelligence Center, SRI International,
Menlo Park, California (1979).

[20] Moore, R. C., Problems in logical form, in: Proc. of the 19th Annual
Meeting of the Association for Computational Linguistice (1981).

[21] Paxton, W., A best-first parser, in: Proc. of the IEEE Speech Sympo-
gium (1974).

[22] Pereira, F. C. N., Logic for Natural Language Analysis, Ph.D. thesis,
University of Edinburgh, Scotland (1982). Reprinted as Technical Note
275, January 1983, Artificial Intelligence Center, SRI International,
Menlo Park, California.

B4



23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

Perrault, C. R. and Grosz, B. J., Natural language interfaces, Annual
Review of Computer Science 1 (1986) 47-82.

Reiter, R., On closed world data bases, in: Logic end Databases
(Plenum Press, New York, New York, 1978).

Robinson, A., Appelt, D. E., Grosz, B., Hendrix, G., and Robinson,
J., Interpreting Natural-Language Utterances in Dialogs About Tasks,
Technical Note 210, Artificial Intelligence Center, SRI International
(1980).

Robinson, J. J., Diagram: a grammar for dialogues, Communications
of the ACM 25 (1) (1982) 27-47.

Shieber, 8. M., The design of a computer language for linguistic infor-
mation, in: Proc. of Coling84 (1984) 362-366.

Templeton, M., Practical natural language processing, in: Rubinof, and
Yovits, (Eds.), Advances in Computers (Academic Press, 1975).

Templeton, M. and Burger, J., Problems in natural language interface
to dbms with examples from eufid, in: Conference on Applied Natural
Language Processing (1983) 3-16.

Thompson, B. and Thompson, F., Introducing ask, a simple knowledge-
able system, in: Conference on Applied Natural Languege Processing
(1983) 17-24.

Thompson, B. and Thompson, F., Rapidly extensible natural language,
in: ACM Conference (1978).

Thompson, F. B. and Thompson, B. H., Practical natural langunage
processing: the rel system as prototype, in: Advances in Computers 13
(Academic Press, New York, New York, 1975).

Vanlehn, K. A., Determining the Scope of English Quantifiers, Master’s
thesis, M.I.T. (1978). Published as Report AI-TR-483.

Waltz, D., Natural-language access to a large data base: an engineer-
ing approach, in: Proc. of the Fourth Internatioal Joint Conference on
Artificial Intelligence (1975) 868-872.

85



[35] Warren, D. H. D. and Pereira, F. C. N., An efficient easily adaptable
system for interpreting natural language queries, American Journal of
Computational Linguistics 8 (3-4) (1982) 110-122.

[36] Woods, W. A., Cascaded atn grammars, American Journal of Compu-
tational Linguistics 6 (1) (1980) 1-12.

[37] Woods, W. A., Semantics and quantification in natural language ques-
tion answering, in: Yovits, M. C. (Ed.), Advances in Computers 17
(Academic Press, 1978).

[38] Woods, W. A., Kaplan, R. M., and Nash-Webber, B., The Lunar
Sciences Natural Language Information System: Final Report, Re-
port 3438, Bolt Beranek and Newman Inc. (1972).

36








